Redis中String 的底层实现是什么?

Redis中String 的底层实现是什么?

Redis 是基于 C 语言编写的,但 Redis 的 String 类型的底层实现并不是 C 语言中的字符串(即以空字符 \0 结尾的字符数组),而是自己编写了 SDS(Simple Dynamic String,简单动态字符串) 来作为底层实现。

SDS 最早是 Redis 作者为日常 C 语言开发而设计的 C 字符串,后来被应用到了 Redis 上,并经过了大量的修改完善以适合高性能操作。

Redis7.0 的 SDS 的部分源码如下(redis/src/sds.h at 7.0 · redis/redis · GitHub):

/* Note: sdshdr5 is never used, we just access the flags byte directly.* However is here to document the layout of type 5 SDS strings. */
struct __attribute__ ((__packed__)) sdshdr5 {unsigned char flags; /* 3 lsb of type, and 5 msb of string length */char buf[];
};
struct __attribute__ ((__packed__)) sdshdr8 {uint8_t len; /* used */uint8_t alloc; /* excluding the header and null terminator */unsigned char flags; /* 3 lsb of type, 5 unused bits */char buf[];
};
struct __attribute__ ((__packed__)) sdshdr16 {uint16_t len; /* used */uint16_t alloc; /* excluding the header and null terminator */unsigned char flags; /* 3 lsb of type, 5 unused bits */char buf[];
};
struct __attribute__ ((__packed__)) sdshdr32 {uint32_t len; /* used */uint32_t alloc; /* excluding the header and null terminator */unsigned char flags; /* 3 lsb of type, 5 unused bits */char buf[];
};
struct __attribute__ ((__packed__)) sdshdr64 {uint64_t len; /* used */uint64_t alloc; /* excluding the header and null terminator */unsigned char flags; /* 3 lsb of type, 5 unused bits */char buf[];
};

通过源码可以看出,SDS 共有五种实现方式 SDS_TYPE_5(并未用到)、SDS_TYPE_8、SDS_TYPE_16、SDS_TYPE_32、SDS_TYPE_64,其中只有后四种实际用到。Redis 会根据初始化的长度决定使用哪种类型,从而减少内存的使用。

类型字节
sdshdr5< 1<8
sdshdr818
sdshdr16216
sdshdr32432
sdshdr64864

对于后四种实现都包含了下面这 4 个属性:

  • len:字符串的长度也就是已经使用的字节数

  • alloc:总共可用的字符空间大小,alloc-len 就是 SDS 剩余的空间大小

  • buf[]:实际存储字符串的数组

  • flags:低三位保存类型标志

SDS 相比于 C 语言中的字符串有如下提升:

  1. 可以避免缓冲区溢出:C 语言中的字符串被修改(比如拼接)时,一旦没有分配足够长度的内存空间,就会造成缓冲区溢出。SDS 被修改时,会先根据 len 属性检查空间大小是否满足要求,如果不满足,则先扩展至所需大小再进行修改操作。

  2. 获取字符串长度的复杂度较低:C 语言中的字符串的长度通常是经过遍历计数来实现的,时间复杂度为 O(n)。SDS 的长度获取直接读取 len 属性即可,时间复杂度为 O(1)。

  3. 减少内存分配次数:为了避免修改(增加/减少)字符串时,每次都需要重新分配内存(C 语言的字符串是这样的),SDS 实现了空间预分配和惰性空间释放两种优化策略。当 SDS 需要增加字符串时,Redis 会为 SDS 分配好内存,并且根据特定的算法分配多余的内存,这样可以减少连续执行字符串增长操作所需的内存重分配次数。当 SDS 需要减少字符串时,这部分内存不会立即被回收,会被记录下来,等待后续使用(支持手动释放,有对应的 API)。

  4. 二进制安全:C 语言中的字符串以空字符 \0 作为字符串结束的标识,这存在一些问题,像一些二进制文件(比如图片、视频、音频)就可能包括空字符,C 字符串无法正确保存。SDS 使用 len 属性判断字符串是否结束,不存在这个问题。

🤐 多提一嘴,很多文章里 SDS 的定义是下面这样的:

struct sdshdr {unsigned int len;unsigned int free;char buf[];
};

这个也没错,Redis 3.2 之前就是这样定义的。后来,由于这种方式的定义存在问题,lenfree 的定义用了 4 个字节,造成了浪费。Redis 3.2 之后,Redis 改进了 SDS 的定义,将其划分为了现在的 5 种类型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/462611.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JS进阶级案例-----时钟

首先呢&#xff0c;是由四张图片构成&#xff0c;使用css摆放好&#xff0c;再使用JS给三个指针绑定获取时间和要旋转的角度&#xff0c;在获取对应的指针元素&#xff0c;给到定时器&#xff0c;实现时钟动态更新。 <!DOCTYPE html> <html lang"en"> &…

【前端基础】HTML 基础

目标&#xff1a;掌握标签基本语法&#xff0c;能够独立布局文章页。 核心技术点 网页组成 排版标签 多媒体标签及属性 综合案例一 - 个人简介 综合案例二 - Vue 简介 02-标签语法 HTML 超文本标记语言——HyperText Markup Language。 超文本&#xff1a;链接标记&a…

UE5相机系统初探(一)

UE5相机系统初探&#xff08;一&#xff09; 和Unity类似&#xff0c;UE的相机也是由名为Camera的component控制的。那么&#xff0c;在UE中要如何实现一个跟随玩家的第三人称相机呢&#xff1f;假设我们已经有了一个表示玩家的类ACF_Character&#xff0c;首先第一步就是要先在…

数据库->联合查询

目录 一、联合查询 1.联合查询 2.多表联合查询时MYSQL内部是如何进⾏计算的 3.多表联合查询 3.1语法 3.2指定多个表&#xff0c;进行联合查询 3.3通过表与表中的链接条件过滤掉无效数据 3.4通过指定列查询&#xff0c;精简查询结果​编辑 3.5可以通过给表起别名的方式&…

有关《WebGIS开发 从入门到实践》的分享

从30号发布了新书的上架消息之后&#xff0c;已有不少的朋友、学生下单购买了&#xff0c;有部分已经收到了书了&#xff0c;收到书大致翻阅后也第一时间向我进行了反馈。本文结合我在写本书时的思考和收到的大家反馈&#xff0c;给大家介绍一下我们花了三年写完出的《WebGIS开…

YOLO——yolo v4(2)

文章目录 一、损失函数改进1.GIOU损失2.DIOU损失3.CIOU损失 二、非极大值抑制 YOLOv4是一种先进的目标检测算法&#xff0c;它在YOLO系列的基础上进行了多项改进和优化。 一、损失函数改进 IOU损失表示预测框A和真实框B之间交并比的差值&#xff0c;反映预测检测框的检测效果。…

网络请求优化:理论与实践

文章目录 引言1. DNS 解析耗时因素优化措施扩展阅读 2. 创建连接耗时因素优化措施扩展阅读 3. 发送 / 接收数据耗时因素优化措施扩展阅读 4. 关闭连接耗时因素优化措施扩展阅读 总结 引言 网络请求的性能会直接影响到用户体验。本文将探讨网络请求的各个步骤&#xff0c;以及如…

R语言结构方程模型(SEM)

原文链接&#xff1a;R语言结构方程模型&#xff08;SEM&#xff09;https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247624956&idx4&sn295580a016a86cfee8ee2277c93e32d5&chksmfa8da91bcdfa200da897f1f267492039865bdfe5d75a1c6e6df92ff5005e0eb5cc33a…

android数组控件Textview

说明&#xff1a;android循环控件&#xff0c;注册和显示内容 效果图&#xff1a; step1: E:\projectgood\resget\demozz\IosDialogDemo-main\app\src\main\java\com\example\iosdialogdemo\TimerActivity.java package com.example.iosdialogdemo;import android.os.Bundl…

GA/T1400视图库平台EasyCVR视频分析设备平台微信H5小程序:智能视频监控的新篇章

GA/T1400视图库平台EasyCVR是一款综合性的视频管理工具&#xff0c;它兼容Windows、Linux&#xff08;包括CentOS和Ubuntu&#xff09;以及国产操作系统。这个平台不仅能够接入多种协议&#xff0c;还能将不同格式的视频数据统一转换为标准化的视频流&#xff0c;通过无需插件的…

【机器学习】26. 聚类评估方法

聚类评估方法 1. Unsupervised Measure1.1. Method 1: measure cohesion and separationSilhouette coefficient Method 2&#xff1a;Correlation between two similarity matricesMethod 3&#xff1a;Visual Inspection of similarity matrix 2. Supervised measures3. 决定…

不适合的学习方法

文章目录 不适合的学习方法1. 纯粹死记硬背2. 过度依赖单一资料3. 线性学习4. 被动学习5. 一次性学习6. 忽视实践7. 缺乏目标导向8. 过度依赖技术9. 忽视个人学习风格10. 过于频繁的切换 结论 以下是关于不适合的学习方法的更详细描述&#xff0c;包括额外的内容和相关公式&…

【FNENet】基于帧级非语言特征增强的情感分析

这篇文章语言极其晦涩难懂&#xff0c;内容和同专栏下的CENet中每一张图都百分之95相似&#xff0c;有些描述位置和内容都一模一样&#xff0c;还并且没有引用人家 abstract&#xff1a; 多模态情感分析&#xff08;Multimodal Sentiment Analysis&#xff0c; MSA&#xff09…

贪心算法习题其三【力扣】【算法学习day.20】

前言 ###我做这类文档一个重要的目的还是给正在学习的大家提供方向&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;&#xff09;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关键点&#xff0c;力扣上的大佬们的题解质量是非常非常高滴&am…

shell脚本案例:RAC配置多路径时获取磁盘设备WWID和磁盘大小

使用场景 在RAC配置多路径时&#xff0c;需要获取到磁盘设备的wwid。因为RAC的磁盘配置是提前规划好的&#xff0c;只知道wwid&#xff0c;不知道磁盘对应大小&#xff0c;是不知道应该如何配置多路径的mutipath.conf文件的&#xff1b;而凭借肉眼手工去对应磁盘设备的wwid和大…

【毫米波雷达(三)】汽车控制器启动流程——BootLoader

汽车控制器启动流程——BootLoader 一、什么是Bootloader(BT)&#xff1f;二、FBL、PBL、SBL、ESS的区别三、MCU的 A/B分区的实现 一、什么是Bootloader(BT)&#xff1f; BT就是一段程序&#xff0c;一段引导程序。它包含了启动代码、中断、主程序等。 雷达启动需要由BT跳转到…

论技术思维和产品思维

大家好&#xff0c;我是农村程序员&#xff0c;独立开发者&#xff0c;前端之虎陈随易。 这是我的个人网站&#xff1a;https://chensuiyi.me。 我的所以文章都可以在我的个人网站找到&#xff0c;欢迎访问&#xff0c;也欢迎与我交朋友。 程序员做独立开发&#xff0c;技术思…

【python】flash-attn安装

这个命令&#xff1a; 确保使用正确的 CUDA 12.6 工具链 设置必要的 CUDA 环境变量 包含了常见的 GPU 架构支持 利用你的128核心进行并行编译 # 清理之前的安装 proxychains4 pip uninstall -y flash-attn# 获取 CUDA 路径 CUDA_PATH$(dirname $(dirname $(which nvcc)))# 使用…

RFID资产管理

随着物联网和智能制造的发展&#xff0c;RFID资产管理逐渐成为企业提升运营效率的重要工具。利用RFID技术&#xff0c;企业能够实时跟踪和管理各种固定资产&#xff0c;从而提高资产利用率&#xff0c;降低运营成本。在现代化的管理体系中&#xff0c;RFID资产管理不仅限于资产…

linux查看系统架构的命令

两种方式&#xff0c;以下以中标麒麟为示例&#xff1a; 1.cat /proc/verison Linux version 3.10.0-862.ns7_4.016.mips64el mips64el即为架构 2.uname -a 输出所有内容 Linux infosec 3.10.0-862.ns7_4.016.mips64el #1 SMP PREEMPT Mon Sep 17 16:06:31 CST 2018 mips64el…