音视频入门基础:FLV专题(22)——FFmpeg源码中,获取FLV文件音频信息的实现(中)

本文接着《音视频入门基础:FLV专题(21)——FFmpeg源码中,获取FLV文件音频信息的实现(上)》,继续讲解FFmpeg获取FLV文件的音频信息到底是从哪个地方获取的。本文的一级标题从“四”开始。

四、音频采样率

(一)FFmpeg源码中,获取FLV文件音频采样率的实现

FLV文件中名称为“onMetadata”的Script Tag、每个Audio Tag的AudioTagHeader、AudioSpecificConfig都包含音频采样率信息。但是FFmpeg获取FLV文件的音频采样率,是从AudioSpecificConfig的samplingFrequencyIndex属性中获取的、而忽略另外两个地方的音频采样率信息。

由《音视频入门基础:AAC专题(11)——AudioSpecificConfig简介》可以知道,FLV文件中的音频为AAC时,正常情况下它必定存在一个Audio Tag包含Audio Specific Config,而Audio Specific Config中存在一个占4位的samplingFrequencyIndex属性,表示音频的采样频率:

由《音视频入门基础:AAC专题(12)——FFmpeg源码中,解码AudioSpecificConfig的实现》可以知道,ff_mpeg4audio_get_config_gb函数中,通过语句:c->sample_rate = get_sample_rate(gb, &c->sampling_index)获取AudioSpecificConfig的samplingFrequencyIndex属性。执行decode_audio_specific_config_gb函数后,m4ac指向的变量会得到从AudioSpecificConfig中解码出来的属性:

static inline int get_sample_rate(GetBitContext *gb, int *index)
{*index = get_bits(gb, 4);return *index == 0x0f ? get_bits(gb, 24) :ff_mpeg4audio_sample_rates[*index];
}

然后在decode_audio_specific_config_gb函数外部,通过aac_decode_frame_int函数将上一步得到的samplingFrequencyIndex属性赋值给AVCodecContext的sample_rate:

static int aac_decode_frame_int(AVCodecContext *avctx, AVFrame *frame,int *got_frame_ptr, GetBitContext *gb,const AVPacket *avpkt)
{
//...if (ac->oc[1].status && audio_found) {avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier;avctx->frame_size = samples;ac->oc[1].status = OC_LOCKED;}
//...
}

然后在dump_stream_format函数中,通过avcodec_string函数中的语句:av_bprintf(&bprint, "%d Hz, ", enc->sample_rate)拿到上一步中得到的AVCodecContext的sample_rate。最后再在dump_stream_format函数中将profile打印出来:

void avcodec_string(char *buf, int buf_size, AVCodecContext *enc, int encode)
{
//...switch (enc->codec_type) {case AVMEDIA_TYPE_AUDIO:av_bprintf(&bprint, "%s", separator);if (enc->sample_rate) {av_bprintf(&bprint, "%d Hz, ", enc->sample_rate);}
//...}
//...
}

(二)修改Audio Specific Config中的samplingFrequencyIndex属性验证

下面我们做一个验证:

FLV文件video1.flv的Audio Specific Config中的samplingFrequencyIndex属性的值为4,对应的音频采样频率为44100Hz:

用ffmpeg -i video1.flv命令可以查看到video1.flv文件的音频采样频率为44100Hz:

我们用Notepad++修改video1.flv文件的Audio Specific Config中的samplingFrequencyIndex属性,把它的值从4改为0。修改完成后把文件名称改为“video1_AudioSpecificConfig.flv”:

用flvAnalyser工具打开修改后的FLV文件video1_AudioSpecificConfig.flv,可以看到Audio Specific Config中的samplingFrequencyIndex属性的值确实被修改为了0,对应音频采样频率变为了96000Hz:

用“ffmpeg -i video1_AudioSpecificConfig.flv”命令可以查看到FLV文件的音频采样频率确实变为96000Hz了:

用ffplay播放video1_AudioSpecificConfig.flv会发现没有声音,从而证明FFmpeg获取FLV文件的音频采样率,是从AudioSpecificConfig的samplingFrequencyIndex属性中获取的。由于video1_AudioSpecificConfig.flv文件的samplingFrequencyIndex属性被修改了, 所以它的音频采样频率信息不正确,导致用ffplay播放不出来:

但是要注意的是:每种音视频SDK和音视频播放器获取音频采样率的位置都不同,比如FFmpeg是从AudioSpecificConfig的samplingFrequencyIndex属性中获取的,但是VLC是从Audio Tag的AudioTagHeader中获取的。

用VLC播放video1_AudioSpecificConfig.flv,会发现其显示的音频采样频率还是修改前的44100Hz,可以正常播放声音。因为VLC获取FLV文件的音频采样频率是从Audio Tag的AudioTagHeader中获取:

五、音频声道数

(一)FFmpeg源码中,获取FLV文件音频声道数的实现

FLV文件中名称为“onMetadata”的Script Tag、每个Audio Tag的AudioTagHeader、AudioSpecificConfig都包含音频声道数信息。FFmpeg获取FLV文件的音频声道数,主要是从Audio Tag的AudioTagHeader中的SoundType属性获取的。

由《音视频入门基础:FLV专题(18)——Audio Tag简介》可以知道,Audio Tag的AudioTagHeader中存在一个占1位的SoundType属性,表示音频声道数:

0:单声道

1:立体声

由《音视频入门基础:FLV专题(19)——FFmpeg源码中,解码Audio Tag的AudioTagHeader,并提取AUDIODATA的实现》可以知道,FFmpeg源码中使用flv_read_packet函数来读取每个Tag的信息。如果判断出该Tag为Audio Tag,flv_read_packet函数中会通过下面代码块将AudioTagHeader的SoundType属性提取出来,转换得到音频音频声道数。将音频声道数目存贮到局部变量channels中:

        channels = (flags & FLV_AUDIO_CHANNEL_MASK) == FLV_STEREO ? 2 : 1;

将上述得到的音频声道数目赋值给st->codecpar->ch_layout。st->codecpar为指向一个AVCodecParameters类型变量的指针:

        if (!av_channel_layout_check(&st->codecpar->ch_layout) ||!st->codecpar->sample_rate ||!st->codecpar->bits_per_coded_sample) {av_channel_layout_default(&st->codecpar->ch_layout, channels);//...}

然后在flv_read_packet函数外部,通过avcodec_parameters_to_context函数将AVCodecParameters的ch_layout赋值给AVCodecContext的ch_layout:

int avcodec_parameters_to_context(AVCodecContext *codec,const AVCodecParameters *par)
{
//...switch (par->codec_type) {case AVMEDIA_TYPE_AUDIO:ret = av_channel_layout_copy(&codec->ch_layout, &par->ch_layout);//....break;}
//...
}

然后在dump_stream_format函数中,通过avcodec_string函数中的语句:av_channel_layout_describe_bprint(&enc->ch_layout, &bprint)拿到AVCodecContext的ch_layout对应的音频声道数目。最后再在dump_stream_format函数中将音频声道数目打印出来:

void avcodec_string(char *buf, int buf_size, AVCodecContext *enc, int encode)
{
//...switch (enc->codec_type) {case AVMEDIA_TYPE_AUDIO:av_channel_layout_describe_bprint(&enc->ch_layout, &bprint);//...break;}
//...
}

(二)修改Audio Specific Config中的channelConfiguration属性验证

下面我们做一个验证:

FLV文件video1.flv的Audio Tag的AudioTagHeader中的SoundType属性值为1,对应的音频声道数为立体声(双声道)。这里由于flvAnalyser工具的局限性没办法直接看到AudioTagHeader中的SoundType属性,但是按照《音视频入门基础:FLV专题(18)——Audio Tag简介》中讲述的格式,自己换算一下SoundType的值就出来了。0xAF等于二进制的0b10101111,SoundFormat占4位,SoundRate占2位,SoundSize占1位,所以这里SoundType的值就是1:

该文件的Audio Specific Config中的channelConfiguration属性的值为2,对应的音频声道数也为双声道:

用ffmpeg -i video1.flv命令可以查看到video1.flv文件的音频声道数为双声道:

我们用Notepad++修改video1.flv文件的Audio Specific Config中的channelConfiguration属性,把它的值从2改为1。修改完成后把文件名称改为“video1_AudioSpecificConfig1.flv”。用flvAnalyser工具打开修改后的FLV文件video1_AudioSpecificConfig1.flv,可以看到Audio Specific Config中的channelConfiguration属性的值确实被修改为了1,对应音频声道数为单声道:

但是用“ffmpeg -i video1_AudioSpecificConfig1.flv”命令查看到FLV文件,发现其音频声道数还是为双声道。因为FFmpeg获取FLV文件的音频声道数,主要是从Audio Tag的AudioTagHeader中的SoundType属性获取,所以修改Audio Specific Config中的channelConfiguration属性对音频声道数没有影响:

但是这并不意味着对FFmpeg源码来讲,Audio Specific Config中的channelConfiguration属性没有意义,相反FFmpeg同样会参考channelConfiguration属性。比如,把Audio Specific Config中的channelConfiguration属性修改为4,重新使用“ffmpeg -i video1_AudioSpecificConfig1.flv”命令,会发现报错:“channel element 1.0 is not allocated”:

把Audio Specific Config中的channelConfiguration属性修改为0,重新使用“ffmpeg -i video1_AudioSpecificConfig1.flv”命令,会发现报错:“ Could not find codec parameters for stream 1 (Audio: aac, 44100 Hz, 0 channels, fltp, 136 kb/s): unspecified number of channels
”:

 所以FFmpeg获取FLV文件的音频声道数,主要是从Audio Tag的AudioTagHeader中的SoundType属性获取,但是它也会参考Audio Specific Config中的channelConfiguration属性。

六、FFmpeg获取FLV文件音频采样率和音频声道数总结

从上面我们可以知道,FLV文件中名称为“onMetadata”的Script Tag、每个Audio Tag的AudioTagHeader、AudioSpecificConfig都会包含音频信息,每种音视频SDK或者音视频播放器获取音频信息时获取的位置和策略可能都不一样。所以很多时候我们播放FLV文件音频的时候,会发现用ffplay能播,但用vlc无法播放;或者反过来用vlc能播,但是用ffplay无法播放。当FLV文件中某些地方的音频信息不正确,但是其它地方音频信息正确时,就会发生某些播放器能正常播放,其它播放器无法播放的情况。所以一定要搞清楚我们使用的音视频SDK和播放器到底获取的是哪个位置的音频信息。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/464412.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个由Deno和React驱动的静态网站生成器

大家好&#xff0c;今天给大家分享一个由 Deno React 驱动的静态网站生成器Pagic。 项目介绍 Pagic 是一个由 Deno React 驱动的静态网站生成器。它配置简单&#xff0c;支持将 md/tsx 文件渲染成静态页面&#xff0c;而且还有大量的官方或第三方主题和插件可供扩展。 核心…

已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘

部署GPTSoVITS过程中&#xff0c;开启一键三连进程发生&#xff0c;报错AsyncRequest object has no attribute _json_response_data 具体报错内容为 (GPTSoVITS) PS D:\Code\GPT-SoVITS-beta0706> python webui.py Running on local URL: http://0.0.0.0:9874 IMPORTANT:…

Chrome 130 版本开发者工具(DevTools)更新内容

Chrome 130 版本开发者工具&#xff08;DevTools&#xff09;更新内容 一、网络&#xff08;Network&#xff09;面板更新 1. 重新定义网络过滤器 网络面板获新增了一些过滤条件&#xff0c;这些过滤条件是根据反馈重新设计的&#xff0c;特定于类型的过滤条件保持不变&…

Java之包,抽象类,接口

目录 包 导入包 静态导入 将类放入包 常见的系统包 抽象类 语法规则 注意事项&#xff1a; 抽象类的作用 接口 实现多个接口 接口间的继承 接口使用实例 &#xff08;法一&#xff09;实现Comparable接口的compareTo()方法 &#xff08;法二&#xff09;实现Comp…

【linux】HTTPS 协议原理

1. 了解 HTTPS 协议原理 &#xff08;一&#xff09;认识 HTTPS HTTPS 也是一种应用层协议&#xff0c;是在 HTTP 协议的基础上引入了一个加密层 因为 HTTP协议的内容都是按照文本的方式进行传输的&#xff0c;这个过程中&#xff0c;可能会出现一些篡改的情况 &#xff08;…

sql server 文件备份恢复

备份情况 在备份 lys_log_1324.bak 日志文件前&#xff0c;删除table_1表 现在恢复文件 恢复文件&#xff08;使用norecovery&#xff09; RESTORE DATABASE [lys] FILE Nlys, FILE Nlys_02 FROM DISK ND:\liyuanshuai\lys_filegroup.bak WITH FILE 1, NORECOVERY, …

Docker-安装

操作系统&#xff1a;Ubuntu 20.04.6 LTS 更新apt sudo apt update 删除旧版本docker sudo apt-get remove docker docker-engine docker.io 安装docker sudo apt install docker.io 查看docker版本 docker --version 启动docker 启动docker sudo systemctl start docker 启用…

CM API方式设置YARN队列资源

简述 对于CDH版本我们可以参考Fayson的文章,本次是CDP7.1.7 CM7.4.4 ,下面只演示一个设置队列容量百分比的示例,其他请参考cloudera官网。 获取cookies文件 生成cookies.txt文件 curl -i -k -v -c cookies.txt -u admin:admin http://192.168.242.100:7180/api/v44/clusters …

Openlayers高级交互(18/20):根据feature,将图形适配到最可视化窗口

本示例的目的是介绍如何在vue+openlayers中使用extent,使用feature fit的方式来适配窗口。当加载到页面上几个图形要充分展示在窗口的时候,可以用这种方式来平铺到页面中。 效果图 专栏名称内容介绍Openlayers基础实战 (72篇)专栏提供73篇文章,为小白群体提供基础知识及示…

鸿蒙HarmonyOS开发:给应用添加基础类型通知和进度条类型通知(API 12)

文章目录 一、通知介绍1、通知表现形式2、通知结构3、请求通知授权 二、创建通知1、发布基础类型通知2、发布进度类型通知3、更新通知4、移除通知 三、设置通知通道1、通知通道类型 四、创建通知组五、为通知添加行为意图1、导入模块。2、创建WantAgentInfo信息。4、创建WantAg…

Armv8的安全启动

目录 1. Trust Firmware 2. TF-A启动流程 3. TF-M启动流程 3.1 BL1 3.2 BL2 4.小结 在之前汽车信息安全 -- 再谈车规MCU的安全启动文章里&#xff0c;我们详细描述了TC3xx 、RH850、NXPS32K3的安全启动流程&#xff0c;而在车控类ECU中&#xff0c;我们也基本按照这个流程…

CAN总线学习笔记(1、CAN总线定义)

CAN总线学习笔记&#xff08;1、CAN总线定义&#xff09; 江协科技CAN总线入门教程视频学习笔记 CAN特性 两根通信线&#xff08;CAN_H\CAN_L&#xff09;,两根线&#xff0c;无需工地 差分信号&#xff0c;抗干扰能力强 高速CAN&#xff08;ISO11898&#xff09;&#xff…

【算法】【优选算法】双指针(下)

目录 一、611.有效三⻆形的个数1.1 左右指针解法1.2 暴力解法 二、LCR 179.查找总价格为目标值的两个商品2.1 左右指针解法2.2 暴力解法 三、15.三数之和3.1 左右指针解法3.2 暴力解法 四、18.四数之和4.1 左右指针解法4.2 暴力解法 一、611.有效三⻆形的个数 题目链接&#x…

Docker 镜像体积优化实践:从基础镜像重建到层压缩的全流程指南

​ 由于最近在发布的时候发现docker镜像体积变得越来越大&#xff0c;导致整个打包发布流程变得非常耗时了。所以又接到一个差事&#xff0c;优化最终镜像体积。顺便也记录一下docker镜像体积优化的一些步骤。 大概步骤可以分为以下几个步骤&#xff1a; 重做基础镜像&#x…

路径规划 | ROS中多个路径规划算法可视化与性能对比分析

目录 0 专栏介绍1 引言2 禁用局部规划器3 路径规划定性对比实验3.1 加载路径规划器和可视化插件3.2 设置起点和终点3.3 选择规划器规划3.4 不同规划器对比3.5 路径保存和加载 4 路径规划定量对比实验4.1 计算规划耗时4.2 计算规划长度4.3 计算拓展节点数4.4 计算路径曲率4.5 计…

十四届蓝桥杯STEMA考试Python真题试卷第二套第五题

来源:十四届蓝桥杯STEMA考试Python真题试卷第二套编程第五题 本题属于迷宫类问题,适合用DFS算法解决,解析中给出了Python中 map() 和列表推导式的应用技巧。最后介绍了DFS算法的两种常见实现方式——递归实现、栈实现,应用场景——迷宫类问题、图的连通性、树的遍历、拓朴排…

【CSS】——基础入门常见操作

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;CSS引入 二&#xff1a;CSS对元素进行美化 1&#xff1a;style修饰 2&#xff1a;选…

RV1126-SDK学习之OSD实现原理

RV1126-SDK学习之OSD实现原理 前言 本文简单记录一下我在学习RV1126的SDK当中OSD绘制的原理的过程。 在学习OSD的过程当中&#xff0c;可能需要补充的基础知识&#xff1a; OSD是什么&#xff1f; BMP图像文件格式大致组成&#xff1f; 图像调色&#xff08;Palette&#…

Vehicle OS软件平台解决方案

在智能汽车快速迭代的趋势之下&#xff0c;广义操作系统Vehicle OS应运而生&#xff0c;针对应用软件开发周期缩短和底层硬件迭代速度加快的背景&#xff0c;Vehicle OS将应用软件开发和底层硬件迭代解耦。它降低了迭代工作量并节约成本&#xff0c;用标准化的接口来助力软件定…

Chromium Mojo(IPC)进程通信演示 c++(1)

网上搜索关于mojo教程 多数都是理论 加上翻译谷歌mojo文档的&#xff0c;但是如何自定义两个进程使用mojo通信呢&#xff1f;看下面的完整例子介绍&#xff1a;&#xff08;本人也是参考谷歌代码例子改编而成&#xff09; 本文演示了client.exe和service.exe 通过mojo::Incomin…