GPU 环境搭建指南:如何在裸机、Docker、K8s 等环境中使用 GPU

how-to-use-gpu

本文主要分享在不同环境,例如裸机、Docker 和 Kubernetes 等环境中如何使用 GPU。

跳转阅读原文:GPU 环境搭建指南:如何在裸机、Docker、K8s 等环境中使用 GPU

1. 概述

仅以比较常见的 NVIDIA GPU 举例,系统为 Linux,对于其他厂家的 GPU 设备理论上流程都是一样的。


省流:

  • 对于裸机环境,只需要安装对应的 GPU Driver 以及 CUDA Toolkit 。

  • 对应 Docker 环境,需要额外安装 nvidia-container-toolkit 并配置 docker 使用 nvidia runtime。

  • 对应 k8s 环境,需要额外安装对应的 device-plugin 使得 kubelet 能够感知到节点上的 GPU 设备,以便 k8s 能够进行 GPU 管理。

注:一般在 k8s 中使用都会直接使用 gpu-operator 方式进行安装,本文主要为了搞清各个组件的作用,因此进行手动安装。

ps;下一篇分享下如何使用 gpu-operator 快速完成安装

2. 裸机环境

裸机中要使用上 GPU 需要安装以下组件:

  • GPU Driver
  • CUDA Toolkit

二者的关系如 NVIDIA 官网上的这个图所示:

components-of-cuda

GPU Driver 包括了 GPU 驱动和 CUDA 驱动,CUDA Toolkit 则包含了 CUDA Runtime。

GPU 作为一个 PCIE 设备,只要安装好之后,在系统中就可以通过 lspci 命令查看到,先确认机器上是否有 GPU:

root@test:~# lspci|grep NVIDIA
3b:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
86:00.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)

可以看到,该设备有两张 Tesla T4 GPU。

安装驱动

首先到 NVIDIA 驱动下载 下载对应的显卡驱动:

search-gpu-driver

最终下载得到的是一个.run 文件,例如 NVIDIA-Linux-x86_64-550.54.14.run

然后直接 sh 方式运行该文件即可

sh NVIDIA-Linux-x86_64-550.54.14.run

接下来会进入图形化界面,一路选择 yes / ok 就好

运行以下命令检查是否安装成功

nvidia-smi

如果出现显卡信息则是安装成功,就像这样:

root@test:~ nvidia-smi
Wed Jul 10 05:41:52 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.161.08             Driver Version: 535.161.08   CUDA Version: 12.2     |
|-----------------------------------------+----------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |
|                                         |                      |               MIG M. |
|=========================================+======================+======================|
|   0  Tesla T4                       On  | 00000000:3B:00.0 Off |                    0 |
| N/A   51C    P0              29W /  70W |  12233MiB / 15360MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------+
|   1  Tesla T4                       On  | 00000000:86:00.0 Off |                    0 |
| N/A   49C    P0              30W /  70W |   6017MiB / 15360MiB |      0%      Default |
|                                         |                      |                  N/A |
+-----------------------------------------+----------------------+----------------------++---------------------------------------------------------------------------------------+
| Processes:                                                                            |
|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |
|        ID   ID                                                             Usage      |
|=======================================================================================|
|   
+---------------------------------------------------------------------------------------+

至此,我们就安装好 GPU 驱动了,系统也能正常识别到 GPU。

这里显示的 CUDA 版本表示当前驱动最大支持的 CUDA 版本。

安装 CUDA Toolkit

对于深度学习程序,一般都要依赖 CUDA 环境,因此需要在机器上安装 CUDA Toolkit

也是到 NVIDIA CUDA Toolkit 下载 下载对应的安装包,选择操作系统和安装方式即可

download-cuda-toolkit

和安装驱动类似,也是一个 .run 文件

# 下载安装文件
wget https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run# 开始安装
sudo sh cuda_12.2.0_535.54.03_linux.run

注意:之前安装过驱动了,这里就不再安装驱动,仅安装 CUDA Toolkit 相关组件

安装完成后输出如下:

root@iZbp15lv2der847tlwkkd3Z:~# sudo sh cuda_12.2.0_535.54.03_linux.run
===========
= Summary =
===========Driver:   Installed
Toolkit:  Installed in /usr/local/cuda-12.2/Please make sure that-   PATH includes /usr/local/cuda-12.2/bin-   LD_LIBRARY_PATH includes /usr/local/cuda-12.2/lib64, or, add /usr/local/cuda-12.2/lib64 to /etc/ld.so.conf and run ldconfig as rootTo uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-12.2/bin
To uninstall the NVIDIA Driver, run nvidia-uninstall
Logfile is /var/log/cuda-installer.log

根据提示配置下 PATH

# 添加 CUDA 12.2 到 PATH
export PATH=/usr/local/cuda-12.2/bin:$PATH# 添加 CUDA 12.2 的 lib64 到 LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH

执行以下命令查看版本,确认安装成功

root@iZbp15lv2der847tlwkkd3Z:~# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Jun_13_19:16:58_PDT_2023
Cuda compilation tools, release 12.2, V12.2.91
Build cuda_12.2.r12.2/compiler.32965470_0

测试

我们使用一个简单的 Pytorch 程序来检测 GPU 和 CUDA 是否正常。

整个调用链大概是这样的:

cuda-call-flow

使用下面代码来测试能够正常使用, check_cuda_pytorch.py 内容如下:

import torchdef check_cuda_with_pytorch():"""检查 PyTorch CUDA 环境是否正常工作"""try:print("检查 PyTorch CUDA 环境:")if torch.cuda.is_available():print(f"CUDA 设备可用,当前 CUDA 版本是: {torch.version.cuda}")print(f"PyTorch 版本是: {torch.__version__}")print(f"检测到 {torch.cuda.device_count()} 个 CUDA 设备。")for i in range(torch.cuda.device_count()):print(f"设备 {i}: {torch.cuda.get_device_name(i)}")print(f"设备 {i} 的显存总量: {torch.cuda.get_device_properties(i).total_memory / (1024 ** 3):.2f} GB")print(f"设备 {i} 的显存当前使用量: {torch.cuda.memory_allocated(i) / (1024 ** 3):.2f} GB")print(f"设备 {i} 的显存最大使用量: {torch.cuda.memory_reserved(i) / (1024 ** 3):.2f} GB")else:print("CUDA 设备不可用。")except Exception as e:print(f"检查 PyTorch CUDA 环境时出现错误: {e}")if __name__ == "__main__":check_cuda_with_pytorch()

先安装下 torch

pip install torch

运行一下

python3 check_cuda_pytorch.py

正常输出应该是这样的:

检查 PyTorch CUDA 环境:
CUDA 设备可用,当前 CUDA 版本是: 12.1
PyTorch 版本是: 2.3.0+cu121
检测到 1 个 CUDA 设备。
设备 0: Tesla T4
设备 0 的显存总量: 14.75 GB
设备 0 的显存当前使用量: 0.00 GB
设备 0 的显存最大使用量: 0.00 GB

**【Kubernetes 系列】**持续更新中,搜索公众号【探索云原生】订阅,文章。


3. Docker 环境

上一步中我们已经在裸机上安装了 GPU Driver,CUDA Toolkit 等工具,实现了在宿主机上使用 GPU。

现在希望在 Docker 容器中使用 GPU,需要怎么处理呢?

为了让 Docker 容器中也能使用 GPU,大致步骤如下:

  • 1)安装 nvidia-container-toolkit 组件
  • 2)docker 配置使用 nvidia-runtime
  • 3)启动容器时增加 --gpu 参数

安装 nvidia-container-toolkit

NVIDIA Container Toolkit 的主要作用是将 NVIDIA GPU 设备挂载到容器中。

兼容生态系统中的任意容器运行时,docker、containerd、cri-o 等。

NVIDIA 官方安装文档:nvidia-container-toolkit-install-guide

对于 Ubuntu 系统,安装命令如下:

# 1. Configure the production repository
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list# Optionally, configure the repository to use experimental packages 
sed -i -e '/experimental/ s/^#//g' /etc/apt/sources.list.d/nvidia-container-toolkit.list# 2. Update the packages list from the repository
sudo apt-get update# 3. Install the NVIDIA Container Toolkit packages
sudo apt-get install -y nvidia-container-toolkit

配置使用该 runtime

支持 Docker, Containerd, CRI-O, Podman 等 CRI。

具体见官方文档 container-toolkit#install-guide

这里以 Docker 为例进行配置:

旧版本需要手动在 /etc/docker/daemon.json 中增加配置,指定使用 nvidia 的 runtime。

    "runtimes": {"nvidia": {"args": [],"path": "nvidia-container-runtime"}}

新版 toolkit 带了一个nvidia-ctk 工具,执行以下命令即可一键配置:

sudo nvidia-ctk runtime configure --runtime=docker

然后重启 Docker 即可

sudo systemctl restart docker

测试

安装nvidia-container-toolkit 后,整个调用链如下:

nv-container-runtime-call-flow

调用链从 containerd --> runC 变成 containerd --> nvidia-container-runtime --> runC 。

然后 nvidia-container-runtime 在中间拦截了容器 spec,就可以把 gpu 相关配置添加进去,再传给 runC 的 spec 里面就包含 gpu 信息了。

Docker 环境中的 CUDA 调用大概是这样的:

cuda-call-in-container.png

从图中可以看到,CUDA Toolkit 跑到容器里了,因此宿主机上不需要再安装 CUDA Toolkit。

使用一个带 CUDA Toolkit 的镜像即可。

最后我们启动一个 Docker 容器进行测试,其中命令中增加 --gpu 参数来指定要分配给容器的 GPU。

--gpu 参数可选值:

  • --gpus all:表示将所有 GPU 都分配给该容器
  • --gpus "device=<id>[,<id>...]":对于多 GPU 场景,可以通过 id 指定分配给容器的 GPU,例如 --gpu “device=0” 表示只分配 0 号 GPU 给该容器
    • GPU 编号则是通过nvidia-smi 命令进行查看

这里我们直接使用一个带 cuda 的镜像来测试,启动该容器并执行nvidia-smi 命令

docker run --rm --gpus all  nvidia/cuda:12.0.1-runtime-ubuntu22.04 nvidia-smi

正常情况下应该是可以打印出容器中的 GPU 信息的。

4. k8s 环境

更进一步,在 k8s 环境中使用 GPU,则需要在集群中部署以下组件:

  • gpu-device-plugin 用于管理 GPU,device-plugin 以 DaemonSet 方式运行到集群各个节点,以感知节点上的 GPU 设备,从而让 k8s 能够对节点上的 GPU 设备进行管理。
  • gpu-exporter:用于监控 GPU

各组件关系如下图所示:

k8s-gpu-manual-instll-vs-gpu-operator

  • 左图为手动安装的场景,只需要在集群中安装 device-plugin 和 监控即可使用。

  • 右图为使用 gpu-operotar 安装场景,本篇暂时忽略

大致工作流程如下:

  • 每个节点的 kubelet 组件维护该节点的 GPU 设备状态(哪些已用,哪些未用)并定时报告给调度器,调度器知道每一个节点有多少张 GPU 卡可用。
  • 调度器为 pod 选择节点时,从符合条件的节点中选择一个节点。
  • 当 pod 调度到节点上后,kubelet 组件为 pod 分配 GPU 设备 ID,并将这些 ID 作为参数传递给 NVIDIA Device Plugin
  • NVIDIA Device Plugin 将分配给该 pod 的容器的 GPU 设备 ID 写入到容器的环境变量 NVIDIA_VISIBLE_DEVICES中,然后将信息返回给 kubelet。
  • kubelet 启动容器。
  • NVIDIA Container Toolkit 检测容器的 spec 中存在环境变量 NVIDIA_VISIBLE_DEVICES,然后根据环境变量的值将 GPU 设备挂载到容器中。

在 Docker 环境我们在启动容器时通过 --gpu 参数手动指定分配给容器的 GPU,k8s 环境则由 device-plugin 自行管理。

安装 device-plugin

device-plugin 一般由对应的 GPU 厂家提供,比如 NVIDIA 的 k8s-device-plugin

安装其实很简单,将对应的 yaml apply 到集群即可。

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.15.0/deployments/static/nvidia-device-plugin.yml

就像这样

root@test:~# kgo get po -l app=nvidia-device-plugin-daemonset
NAME                                   READY   STATUS    RESTARTS   AGE
nvidia-device-plugin-daemonset-7nkjw   1/1     Running   0          10m

device-plugin 启动之后,会感知节点上的 GPU 设备并上报给 kubelet,最终由 kubelet 提交到 kube-apiserver。

因此我们可以在 Node 可分配资源中看到 GPU,就像这样:

root@test:~# k describe node test|grep Capacity -A7
Capacity:cpu:                48ephemeral-storage:  460364840Kihugepages-1Gi:      0hugepages-2Mi:      0memory:             98260824Kinvidia.com/gpu:     2pods:               110

可以看到,除了常见的 cpu、memory 之外,还有nvidia.com/gpu, 这个就是 GPU 资源,数量为 2 说明我们有两张 GPU。

安装 GPU 监控

除此之外,如果你需要监控集群 GPU 资源使用情况,你可能还需要安装 DCCM exporter 结合 Prometheus 输出 GPU 资源监控信息。

helm repo add gpu-helm-charts \https://nvidia.github.io/dcgm-exporter/helm-chartshelm repo updatehelm install \--generate-name \gpu-helm-charts/dcgm-exporter

查看 metrics

curl -sL http://127.0.0.1:8080/metrics
# HELP DCGM_FI_DEV_SM_CLOCK SM clock frequency (in MHz).# TYPE DCGM_FI_DEV_SM_CLOCK gauge# HELP DCGM_FI_DEV_MEM_CLOCK Memory clock frequency (in MHz).# TYPE DCGM_FI_DEV_MEM_CLOCK gauge# HELP DCGM_FI_DEV_MEMORY_TEMP Memory temperature (in C).# TYPE DCGM_FI_DEV_MEMORY_TEMP gauge
...
DCGM_FI_DEV_SM_CLOCK{gpu="0", UUID="GPU-604ac76c-d9cf-fef3-62e9-d92044ab6e52",container="",namespace="",pod=""} 139
DCGM_FI_DEV_MEM_CLOCK{gpu="0", UUID="GPU-604ac76c-d9cf-fef3-62e9-d92044ab6e52",container="",namespace="",pod=""} 405
DCGM_FI_DEV_MEMORY_TEMP{gpu="0", UUID="GPU-604ac76c-d9cf-fef3-62e9-d92044ab6e52",container="",namespace="",pod=""} 9223372036854775794
...

测试

在 k8s 创建 Pod 要使用 GPU 资源很简单,和 cpu、memory 等常规资源一样,在 resource 中 申请即可。

比如,下面这个 yaml 里面我们就通过 resource.limits 申请了该 Pod 要使用 1 个 GPU。

apiVersion: v1
kind: Pod
metadata:name: gpu-pod
spec:restartPolicy: Nevercontainers:- name: cuda-containerimage: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda10.2resources:limits:nvidia.com/gpu: 1 # requesting 1 GPU

这样 kueb-scheduler 在调度该 Pod 时就会考虑到这个情况,将其调度到有 GPU 资源的节点。

启动后,查看日志,正常应该会打印 测试通过的信息。

kubectl logs gpu-pod
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done

至此,在 k8s 环境中也可以使用 GPU 了。


**【Kubernetes 系列】**持续更新中,搜索公众号【探索云原生】订阅,文章。


5. 小结

本文主要分享了在裸机、Docker 环境、k8s 环境中如何使用 GPU。

  • 对于裸机环境,只需要安装对应的 GPU Driver 即可。

  • 对应 Docker 环境,需要额外安装 nvidia-container-toolkit 并配置 docker 使用 nvidia runtime。

  • 对应 k8s 环境,需要额外安装对应的 device-plugin 使得 kubelet 能够感知到节点上的 GPU 设备,以便 k8s 能够进行 GPU 管理。

现在一般都是在 k8s 环境中使用,为了简化安装步骤, NVIDIA 也提供了 gpu-operator来简化安装部署,后续分享一下如何使用 gpu-operator 来快速安装。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/466632.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Axure设计之左右滚动组件教程(动态面板)

很多项目产品设计经常会遇到左右滚动的导航、图片展示、内容区域等&#xff0c;接下来我们用Axure来实现一下左右滚动的菜单导航。通过案例我们可以举一反三进行其他方式的滚动组件设计&#xff0c;如常见的上下滚动、翻页滚动等等。 一、效果展示&#xff1a; 1、点击“向左箭…

每天五分钟深度学习框架pytorch:如何加载手写字体数据集mnist?

本文重点 那个这节课程之后,我们就将通过代码的方式来搭建CNN和RNN模型,然后训练,我们使用的数据集为pytorch中已经封装好的数据集,比如mnist,cafir10,本文我们学习一下如何在pytorch中使用它们,然后为之后的章节做准备,现在我们拿mnist来举例。 mnist和cafir10 MIN…

itextpdf打印A5的问题

使用A5打印的时候&#xff0c;再生成pdf是没有问题的。下面做了一个测试&#xff0c;在打印机中&#xff0c;使用A5的纸张横向放入&#xff0c;因为是家用打印机&#xff0c;A5与A4是同一个口&#xff0c;因此只能这么放。 使用itextpdf生成pdf&#xff0c;在浏览器中预览pdf是…

AJAX 全面教程:从基础到高级

AJAX 全面教程&#xff1a;从基础到高级 目录 什么是 AJAXAJAX 的工作原理AJAX 的主要对象AJAX 的基本用法AJAX 与 JSONAJAX 的高级用法AJAX 的错误处理AJAX 的性能优化AJAX 的安全性AJAX 的应用场景总结与展望 什么是 AJAX AJAX&#xff08;Asynchronous JavaScript and XML…

CKA认证 | Day1 k8s核心概念与集群搭建

第一章 Kubernetes 核心概念 1、主流的容器集群管理系统 容器编排系统&#xff1a; KubernetesSwarmMesos Marathon 2、Kubernetes介绍 Kubernetes是Google在2014年开源的一个容器集群管理系统&#xff0c;Kubernetes简称K8s。 Kubernetes用于容器化应用程序的部署&#x…

web实操1——只使用tomcat发布网站

安装tomcat 下载 肯定是去官网&#xff1a; http://tomcat.apache.org/ 下载之后&#xff0c;解压&#xff1a; &#xff01;&#xff01;解压后&#xff1a; logs日志&#xff1a;就是一些输出&#xff0c;输到文本里。 temp:一些临时文件(不用管) webapps:放网站的 work&…

数据结构:七种排序及总结

文章目录 排序一插入排序1直接插入排序2希尔排序二选择排序3直接选择排序4堆排序三 交换排序5冒泡排序6快速排序四 归并排序7归并排序源码 排序 我们数据结构常见的排序有四大种&#xff0c;四大种又分为七小种&#xff0c;如图所示 排序&#xff1a;所谓排序&#xff0c;就是…

A day a tweet(sixteen)——The better way of search of ChatGPT

Introducing ChatGPT search a/ad.及时的/及时地 ChatGPT can now search the web in a much better way than before so you get fast, timely a.有关的(relative n.亲戚,亲属;同类事物 a.比较的&#xff1b;相对的) answers with link…

HTMLCSS:呈现的3D树之美

效果演示 这段代码通过HTML和CSS创建了一个具有3D效果的树的图形&#xff0c;包括分支、树干和阴影&#xff0c;通过自定义属性和复杂的变换实现了较为逼真的立体效果。 HTML <div class"container"><div class"tree"><div class"…

系统规划与管理师——第十二章 职业素养与法侓法规

目录 职业素养 职业道德 行为规范 职业责任 对客户和公众的责任 法律法规 法律概念 法律体系 诉讼时效 民事诉讼时效 刑事追诉时效 常用的法律法规 合同法 招投标法 著作权法 政府采购法 劳动法 知识产权法 刑法修正案&#xff08;七) IT服务的广泛应用不仅…

HAL库硬件IIC驱动气压传感器BMP180

环境 1、keilMDK 5.38 2、STM32CUBEMX 初始配置 默认即可。 程序 1、头文件 #ifndef __BMP_180_H #define __BMP_180_H#include "main.h"typedef struct {float fTemp; /*温度&#xff0c;摄氏度*/float fPressure; /*压力&#xff0c;pa*/float fAltitude; /*…

沈阳乐晟睿浩科技有限公司抖音小店展望未来

在当今数字化浪潮汹涌的时代&#xff0c;电子商务以其独特的魅力和无限潜力&#xff0c;正深刻改变着人们的消费习惯与商业模式。抖音小店作为短视频与电商深度融合的产物&#xff0c;凭借其庞大的用户基础、精准的内容推送机制以及独特的购物体验&#xff0c;迅速崛起为电商领…

【论文复现】自动化细胞核分割与特征分析

本文所涉及所有资源均在这里可获取。 作者主页&#xff1a; 七七的个人主页 文章收录专栏&#xff1a; 论文复现 欢迎大家点赞 &#x1f44d; 收藏 ⭐ 加关注哦&#xff01;&#x1f496;&#x1f496; 自动化细胞核分割与特征分析 引言效果展示HoverNet概述HoverNet原理分析整…

ESP32 gptimer通用定时器初始化报错:assert failed: timer_ll_set_clock_prescale

背景&#xff1a;IDF版本V5.1.2 &#xff0c;配置ESP32 通用定时器&#xff0c;实现100HZ&#xff0c;占空比50% 的PWM波形。 根据乐鑫官方的IDF指导文档设置内部计数器的分辨率&#xff0c;计数器每滴答一次相当于 1 / resolution_hz 秒。 &#xff08;ESP-IDF编程指导文档&a…

Jest项目实战(4):将工具库顺利迁移到GitHub的完整指南

开源代码&#xff1a;将工具库迁移到GitHub 随着项目的成熟和完善&#xff0c;将其开源不仅可以获得更多的用户和贡献者&#xff0c;还能促进项目本身的发展。GitHub作为全球最大的开源协作平台&#xff0c;自然成为了大多数开发者的首选。本文将引导您完成将工具库迁移至GitH…

C#线程池

目录 前言 线程 线程池 线程池的工作原理 重要方法 C#线程池总结 前言 线程池是一种多线程处理形式&#xff0c;它允许开发者将任务添加到队列中&#xff0c;然后线程池会自动管理线程的创建、分配和回收&#xff0c;以执行这些任务。线程池中的线程都是后台线程&#xf…

SpringBoot项目集成ONLYOFFICE

ONLYOFFICE 文档8.2版本已发布&#xff1a;PDF 协作编辑、改进界面、性能优化、表格中的 RTL 支持等更新 文章目录 前言ONLYOFFICE 产品简介功能与特点Spring Boot 项目中集成 OnlyOffice1. 环境准备2. 部署OnlyOffice Document Server3. 配置Spring Boot项目4. 实现文档编辑功…

用示例来看C2Rust工具的使用和功能介绍

C2Rust可以将C语言的源代码转换成Rust语言的源代码。下面是一个简单的C语言代码示例&#xff0c;以及使用c2Rust工具将其转换为Rust安全代码的过程。 C语言源代码示例 // example.c #include <stdio.h>int add(int a, int b) {return a b; }int main() {int result a…

【IC验证】systemverilog的设计特性

systemverilog的设计特性 一.概述二.面向硬件的过程语句块1.说明2.always_comb2.always_latch3.always_ff 三.关系运算符1.说明2.例子 四.inside判定符1.说明2.例子 五.条件分支语句&#xff08;1&#xff09;说明&#xff08;2&#xff09;例子&#xff08;case和unique case的…

计算不停歇,百度沧海数据湖存储加速方案 2.0 设计和实践

数据湖这个概念&#xff0c;从 2012 年产生到现在已经有十余年的时间&#xff0c;每家公司对它内涵的解读都不太一样。但是数据湖的主要存储底座有从传统的 HDFS 向对象存储演进的趋势。 传统的大数据计算场景&#xff0c;比如 MapReduce、Spark、Hive 这些大数据组件都是基于…