Spark的Standalone集群环境安装

一.简介

与MR对比:
 

概念MR+YARNSpark Standalone
主节点ResourceManagerMaster
从节点NodeManagerWorker
计算进程MapTask,ReduceTaskExecutor

架构:普通分布式主从架构

主:Master:管理节点:管理从节点、接客、资源管理和任务

调度,等同于YARN中的ResourceManager

从:Worker:计算节点:负责利用自己节点的资源运行主节点

分配的任务

功能:提供分布式资源管理和任务调度,基本上与YARN是一致的

看起来很像yarn ,其实作用和yarn一样,是spark自带的计算引擎。

注意:集群环境的每一台服务器都要Annaconda ,否则会出现python3 找不到的错误!!

二.Standalone集群部署

 使用的资源如下:虚拟机中使用的Anaconda,具体:Anaconda3-2021.05-Linux-x86-64,spark使用需要资源-CSDN文库

虚拟机使用的spark,详情:spark-3.1.2-bin-hadoop3.2.tgz资源-CSDN文库

 首先在所有服务器按如下安装Anaconda:

上传,或者同步:
xsync.sh /opt/modules/Anaconda3-2021.05-Linux-x86_64.sh
# 添加执行权限
chmod u+x Anaconda3-2021.05-Linux-x86_64.sh
# 执行
sh ./Anaconda3-2021.05-Linux-x86_64.sh
# 过程
#第一次:【直接回车,然后按q】Please, press ENTER to continue>>>
#第二次:【输入yes】Do you accept the license terms? [yes|no][no] >>> yes
#第三次:【输入解压路径:/opt/installs/anaconda3】[/root/anaconda3] >>> /opt/installs/anaconda3#第四次:【输入yes,是否在用户的.bashrc文件中初始化
Anaconda3的相关内容】Do you wish the installer to initialize  Anaconda3by running conda init? [yes|no][no] >>> yes刷新环境变量:
# 刷新环境变量
source /root/.bashrc
# 激活虚拟环境,如果需要关闭就使用:conda deactivate
conda activate
配置环境变量:
# 编辑环境变量
vi /etc/profile
# 添加以下内容
# Anaconda Home
export ANACONDA_HOME=/opt/installs/anaconda3
export PATH=$PATH:$ANACONDA_HOME/bin
制作软链接:
# 刷新环境变量
source /etc/profile
小结:实现Linux机器上使用Anaconda部署Python3:单机部署:Spark Python Shell
目标:掌握Spark Shell的基本使用
实施
功能:提供一个交互式的命令行,用于测试开发Spark的程序代码
Spark的客户端bin目录下:提供了多个测试工具客户端
启动
核心
# 创建软连接
ln -s /opt/installs/anaconda3/bin/python3 /usr/bin/python3
# 验证
echo $ANACONDA_HOME

 然后在自己使用的虚拟机上安装spark:

# 解压安装
cd /opt/modules
tar -zxf spark-3.1.2-bin-hadoop3.2.tgz -C /opt/installs
# 重命名
cd /opt/installs
mv spark-3.1.2-bin-hadoop3.2 spark-standalone
# 重新构建软连接
rm -rf spark
ln -s spark-standalone spark

去修改spark配置文件:

cd /opt/installs/spark/conf
mv spark-env.sh.template spark-env.sh
vim spark-env.sh

修改如下:

export JAVA_HOME=/opt/installs/jdk
export HADOOP_CONF_DIR=/opt/installs/hadoop/etc/hadoop
export SPARK_MASTER_HOST=bigdata01 # 主节点所在的地址
export SPARK_MASTER_PORT=7077 #主节点内部通讯端口,用于接收客户端请求
export SPARK_MASTER_WEBUI_PORT=8080 #主节点用于供外部提供浏览器web访问的端口
export SPARK_WORKER_CORES=1     # 指定这个集群总每一个从节点能够使用多少核CPU
export SPARK_WORKER_MEMORY=1g   #指定这个集群总每一个从节点能够使用多少内存
export SPARK_WORKER_PORT=7078
export SPARK_WORKER_WEBUI_PORT=8081
export SPARK_DAEMON_MEMORY=1g  # 进程自己本身使用的内存
export SPARK_HISTORY_OPTS="-Dspark.history.fs.logDirectory=hdfs://bigdata01:9820/spark/eventLogs/ -Dspark.history.fs.cleaner.enabled=true"
# Spark中提供了一个类似于jobHistoryServer的进程,就叫做HistoryServer, 用于查看所有运行过的spark程序

在HDFS上创建程序日志存储目录

首先如果没有启动hdfs,需要启动一下

启动
start-dfs.sh
# 创建程序运行日志的存储目录
hdfs dfs -mkdir -p /spark/eventLogs/

继续修改配置文件:

mv spark-defaults.conf.template spark-defaults.conf
vim spark-defaults.conf

添加如下:“

# 末尾
spark.eventLog.enabled           true
spark.eventLog.dir              hdfs://bigdata01:9820/spark/eventLogs
spark.eventLog.compress              true

在workers:从节点地址配置文件

mv workers.template workers
vim workers
# 删掉localhost,添加自己的主机名
bigdata01
bigdata02
bigdata03

修改日志文件,可有可无

mv log4j.properties.template log4j.properties
vim log4j.properties

# 19行:修改日志级别为WARN
log4j.rootCategory=WARN, consolelog4j的5种 级别  debug --> info --> warn --error -->fatal

 为什么要修改?因为我们运行的时候info非常多,比较影响体验,而且也不是报错,对我们一般来说也没什么用。所以把它修改成更高一级的warn。因此说这一步可有可无,做了可以优化使用体验,但是不做也没有任何影响。

同步集群:

xsync.sh /opt/installs/spark-standalone/

使用脚本:
虚拟机中使用的分发文件,和分发命令脚本资源-CSDN文库

可以直接把虚拟机的文件分发给集群中的其他机器

分发完成在其他机器创建软链接:

cd /opt/installs/
ln -s spark-standalone spark换个思路,是否可以同步软链接:
xsync.sh /opt/installs/spark

集群启动:

启动master:
cd /opt/installs/spark
sbin/start-master.sh
启动所有worker:
sbin/start-workers.sh
如果你想启动某一个worker
sbin/start-worker.sh启动日志服务:
sbin/start-history-server.sh要想关闭某个服务,将start换为stop

master的监控页面:
http://bigdata01:8080/

其中bigdata换成自己的ip

至此搭建完毕,来个圆周率测试一下:

# 提交程序脚本:bin/spark-submit
/opt/installs/spark/bin/spark-submit --master spark://bigdata01:7077 /opt/installs/spark/examples/src/main/python/pi.py 200

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/468325.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot整合Sharding-JDBC实现读写分离

SpringBoot整合Sharding-JDBC实现读写分离 Sharding-JDBC实现读写分离,记得先要实现数据库的主从结构先。 1、Sharding-JDBC 简介 Sharding-JDBC 是的分布式数据库中间件解决方案。Sharding-JDBC、Sharding-Proxy 和 Sharding-Sidecar(计划 中)是 3 款相互独立的…

几个docker可用的镜像源

几个docker可用的镜像源 &#x1f490;The Begin&#x1f490;点点关注&#xff0c;收藏不迷路&#x1f490; sudo rm -rf /etc/docker/daemon.json sudo mkdir -p /etc/dockersudo tee /etc/docker/daemon.json <<-EOF {"registry-mirrors": ["https://d…

数字时代企业的基本数据丢失预防策略

在当今的数字时代&#xff0c;数据丢失预防对企业的重要性怎么强调也不为过。了解与数据丢失相关的风险至关重要&#xff0c;因为人为错误和网络攻击等常见原因可能会产生严重后果。 实施有效的数据丢失预防策略&#xff08;例如安全协议、定期数据备份和员工培训&#xff09;…

Android CCodec Codec2 (十九)C2LinearBlock

在上一篇文章的结尾&#xff0c;我们看到fetchLinearBlock方法最终创建了一个C2LinearBlock对象。这一节&#xff0c;我们将深入了解C2LinearBlock是什么&#xff0c;它的作用是什么&#xff0c;以及它是如何被创建的。 1、_C2BlockFactory 先对上一篇文章的结尾内容做简单回顾…

【EasyExcel】EasyExcel导出表格包含合计行、自定义样式、自适应列宽

目录 0 EasyExcel简介1 Excel导出工具类设置自定义表头样式设置自适应列宽添加合计行 2 调用导出工具类导出Excel表3 测试结果 0 EasyExcel简介 在数据处理和报表生成的过程中&#xff0c;Excel是一个非常常用的工具。特别是在Java开发中&#xff0c;EasyExcel库因其简单高效而…

SparkSql读取数据的方式

一、读取普通文件 方式一&#xff1a;给定读取数据源的类型和地址 spark.read.format("json").load(path) spark.read.format("csv").load(path) spark.read.format("parquet").load(path) 方式二&#xff1a;直接调用对应数据源类型的方法 …

Linux相关概念和易错知识点(19)(HDD、Block group)

目录 1.HDD &#xff08;1&#xff09;HDD存储描述 &#xff08;2&#xff09;HDD结构图 &#xff08;3&#xff09;磁盘管理的分治思想 &#xff08;4&#xff09;硬盘中文件系统的整体划分图 2.Block group &#xff08;1&#xff09;文件管理 ①文件属性的存储 ②in…

IDEA构建JavaWeb项目,并通过Tomcat成功运行

目录 一、Tomcat简介 二、Tomcat安装步骤 1.选择分支下载 2.点击下载zip安装包 3.解压到没有中文、空格和特殊字符的目录下 4.双击bin目录下的startup.bat脚本启动Tomcat 5.浏览器访问Tomcat 6.关闭Tomcat服务器 三、Tomcat目录介绍 四、WEB项目的标准结构 五、WEB…

【C#】选课程序增加、删除统计学时

文章目录 【例6-2】编写选课程序。利用利用列表框和组合框增加和删除相关课程&#xff0c;并统计学时数1. 表6-2 属性设置2. 设计窗体及页面3. 代码实现4. 运行效果 【例6-2】编写选课程序。利用利用列表框和组合框增加和删除相关课程&#xff0c;并统计学时数 分析&#xff1…

Sigrity SPEED2000 Power Ground Noise Simulation模式如何进行电源地噪声分析操作指导-SODIMM

Sigrity SPEED2000 Power Ground Noise Simulation模式如何进行电源地噪声分析操作指导-SODIMM Sigrity Speed2000是时域仿真分析工具&#xff0c;Power Ground Noise Simulation模式可以观测器件的时域电压波形和观测电源地空间电压分布&#xff0c; 以下图为例进行分析 用Sp…

【CLIP系列】开篇

在多模态学习领域&#xff0c;CLIP无疑是一项具有里程碑意义的工作&#xff0c;自发布以来便引发了广泛关注。其在视觉-语言基础模型中的影响力极为深远&#xff0c;截至目前&#xff0c;该研究的引用量已突破23,000次&#xff0c;充分体现了其在学术界和工业界的重要地位。 为…

dell服务器安装ESXI8

1.下载镜像在官网 2.打开ipmi&#xff08;idrac&#xff09;&#xff0c;将esxi镜像挂载&#xff0c;然后服务器开机 3.进入bios设置cpu虚拟化开启&#xff0c;进入boot设置启动选项为映像方式 4..进入安装引导界面3.加载完配置进入安装 系统提示点击继 5.选择安装磁盘进行…

深度学习-神经网络基础-激活函数与参数初始化(weight, bias)

一. 神经网络介绍 神经网络概念 神经元构建 神经网络 人工神经网络是一种模仿生物神经网络结构和功能的计算模型, 由神经元构成 将神经元串联起来 -> 神经网络 输入层: 数据 输出层: 目标(加权和) 隐藏层: 加权和 激活 全连接 第N层的每个神经元和第N-1层的所有神经元…

栈(Stack)和队列(Deque、Queue)

文章目录 一、栈1.1 栈 VS 虚拟机栈 VS 栈帧1.2 数据结构 -- 栈介绍1.3 用数组模拟实现栈1.4 栈的功能&#xff1a;逆序打印 二、队列2.1 数据结果 -- 队列介绍2.2 用单链表模拟实现Queue队列 一、栈 1.1 栈 VS 虚拟机栈 VS 栈帧 区别&#xff1a; 栈&#xff1a;是一种数据结…

Spring Boot2.0之九 使用EasyExcel导出Excel

前言 SpringBoot项目实现Excel文件导出功能&#xff0c;可以使用alibaba开源项目EasyExcel实现。默认导出的Excel表头为宋体14加粗&#xff0c;表内容为宋体11。 一、引入EasyExcel依赖 <dependency><groupId>com.alibaba</groupId><artifactId>eas…

Java关于暴力破解MD5加密字符串示例

最近看到一个系统的用户密码直接就是用MD5加密的方式存在数据库的&#xff0c;而且也没有加盐&#xff0c;顿时有些好奇&#xff0c;因为一直听说MD5加密不够安全&#xff0c;很容易碰撞攻击&#xff0c;但是这个容易是有多容易&#xff0c;如果要破解一个MD5加密的密码大概要多…

我国成功发射航天宏图PIESAT-2 01~04星

11月9日11时39分&#xff0c;我国在酒泉卫星发射中心使用长征二号丙运载火箭&#xff0c;成功将航天宏图PIESAT-2 01&#xff5e;04星发射升空&#xff0c;卫星顺利进入预定轨道&#xff0c;发射任务获得圆满成功[1]。 航天宏图信息技术股份有限公司&#xff08;以下简称“航天…

三十四、VB基本知识与提高篇

一、代码编写规则: (一)标识符的使用规则: 标识符有两种:一种是系统关键字,另一种是自己定义标识符。 1、不能与系统关键字相同。 2、同一作用域(块)中不同出现重名标识符。用户自定义的标识符是不区分大小写的。 3、自定义标识符必须以字母开头,长度不能超过255…

[代码随想录打卡Day8] 344.反转字符串 541. 反转字符串II 54. 替换数字

反转字符串 难度&#xff1a;易。 问题描述&#xff1a;编写一个函数&#xff0c;其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。不要给另外的数组分配额外的空间&#xff0c;你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。 这个就是开头…

【双十一特惠】腾讯云省钱攻略:如何智取云计算资源

前言 双十一不仅是购物的狂欢节&#xff0c;对于云计算用户来说&#xff0c;更是一个节省成本的绝佳时机。腾讯云&#xff0c;作为国内领先的云计算服务商&#xff0c;每年双十一都会推出一系列优惠活动。本文将为您揭开如何在这个购物节中&#xff0c;最大化利用腾讯云的优惠…