深度学习经典模型之ZFNet

1 ZFNet

1.1 模型介绍

​ ZFNet是由 M a t t h e w Matthew Matthew D . Z e i l e r D. Zeiler D.Zeiler R o b Rob Rob F e r g u s Fergus Fergus在AlexNet基础上提出的大型卷积网络,在2013年ILSVRC图像分类竞赛中以11.19%的错误率获得冠军(实际上原ZFNet所在的队伍并不是真正的冠军,原ZFNet以13.51%错误率排在第8,真正的冠军是 C l a r i f a i Clarifai Clarifai这个队伍,而 C l a r i f a i Clarifai Clarifai这个队伍所对应的一家初创公司的CEO又是 Z e i l e r Zeiler Zeiler,而且 C l a r i f a i Clarifai Clarifai对ZFNet的改动比较小,所以通常认为是ZFNet获得了冠军) [ 3 − 4 ] ​ ^{[3-4]}​ [34]。ZFNet实际上是微调(fine-tuning)了的AlexNet,并通过反卷积(Deconvolution)的方式可视化各层的输出特征图,进一步解释了卷积操作在大型网络中效果显著的原因。

1.2 模型结构

在这里插入图片描述

​ 图1 ZFNet网络结构图(原始结构图与AlexNet风格结构图)

​ 如图4.4所示,ZFNet与AlexNet类似,都是由8层网络组成的卷积神经网络,其中包含5层卷积层和3层全连接层。两个网络结构最大的不同在于,ZFNet第一层卷积采用了 7 × 7 × 3 / 2 7\times7\times3/2 7×7×3/2的卷积核替代了AlexNet中第一层卷积核 11 × 11 × 3 / 4 11\times11\times3/4 11×11×3/4的卷积核。图4.5中ZFNet相比于AlexNet在第一层输出的特征图中包含更多中间频率的信息,而AlexNet第一层输出的特征图大多是低频或高频的信息,对中间频率特征的缺失导致后续网络层次如图4.5(c)能够学习到的特征不够细致,而导致这个问题的根本原因在于AlexNet在第一层中采用的卷积核和步长过大。

在这里插入图片描述

在这里插入图片描述

​ 图2 (a)ZFNet第一层输出的特征图(b)AlexNet第一层输出的特征图(c)AlexNet第二层输出的特征图(d)ZFNet第二层输出的特征图

​ 表3 ZFNet网络参数配置

网络层输入尺寸核尺寸输出尺寸可训练参数量
卷积层 C 1 C_1 C1 ∗ ^* 224 × 224 × 3 224\times224\times3 224×224×3 7 × 7 × 3 / 2 , 96 7\times7\times3/2,96 7×7×3/2,96 110 × 110 × 96 110\times110\times96 110×110×96 ( 7 × 7 × 3 + 1 ) × 96 (7\times7\times3+1)\times96 (7×7×3+1)×96
下采样层 S m a x S_{max} Smax 110 × 110 × 96 110\times110\times96 110×110×96 3 × 3 / 2 3\times3/2 3×3/2 55 × 55 × 96 55\times55\times96 55×55×960
卷积层 C 2 C_2 C2 ∗ ^* 55 × 55 × 96 55\times55\times96 55×55×96 5 × 5 × 96 / 2 , 256 5\times5\times96/2,256 5×5×96/2,256 26 × 26 × 256 26\times26\times256 26×26×256 ( 5 × 5 × 96 + 1 ) × 256 (5\times5\times96+1)\times256 (5×5×96+1)×256
下采样层 S m a x S_{max} Smax 26 × 26 × 256 26\times26\times256 26×26×256 3 × 3 / 2 3\times3/2 3×3/2 13 × 13 × 256 13\times13\times256 13×13×2560
卷积层 C 3 C_3 C3 13 × 13 × 256 13\times13\times256 13×13×256 3 × 3 × 256 / 1 , 384 3\times3\times256/1,384 3×3×256/1,384 13 × 13 × 384 13\times13\times384 13×13×384 ( 3 × 3 × 256 + 1 ) × 384 (3\times3\times256+1)\times384 (3×3×256+1)×384
卷积层 C 4 C_4 C4 13 × 13 × 384 13\times13\times384 13×13×384 3 × 3 × 384 / 1 , 384 3\times3\times384/1,384 3×3×384/1,384 13 × 13 × 384 13\times13\times384 13×13×384 ( 3 × 3 × 384 + 1 ) × 384 (3\times3\times384+1)\times384 (3×3×384+1)×384
卷积层 C 5 C_5 C5 13 × 13 × 384 13\times13\times384 13×13×384 3 × 3 × 384 / 1 , 256 3\times3\times384/1,256 3×3×384/1,256 13 × 13 × 256 13\times13\times256 13×13×256 ( 3 × 3 × 384 + 1 ) × 256 (3\times3\times384+1)\times256 (3×3×384+1)×256
下采样层 S m a x S_{max} Smax 13 × 13 × 256 13\times13\times256 13×13×256 3 × 3 / 2 3\times3/2 3×3/2 6 × 6 × 256 6\times6\times256 6×6×2560
全连接层 F 6 F_6 F6 6 × 6 × 256 6\times6\times256 6×6×256 9216 × 4096 9216\times4096 9216×4096 1 × 1 × 4096 1\times1\times4096 1×1×4096 ( 9216 + 1 ) × 4096 (9216+1)\times4096 (9216+1)×4096
全连接层 F 7 F_7 F7 1 × 1 × 4096 1\times1\times4096 1×1×4096 4096 × 4096 4096\times4096 4096×4096 1 × 1 × 4096 1\times1\times4096 1×1×4096 ( 4096 + 1 ) × 4096 (4096+1)\times4096 (4096+1)×4096
全连接层 F 8 F_8 F8 1 × 1 × 4096 1\times1\times4096 1×1×4096 4096 × 1000 4096\times1000 4096×1000 1 × 1 × 1000 1\times1\times1000 1×1×1000 ( 4096 + 1 ) × 1000 (4096+1)\times1000 (4096+1)×1000

卷积层 C 1 C_1 C1与AlexNet中的 C 1 C_1 C1有所不同,采用 7 × 7 × 3 / 2 7\times7\times3/2 7×7×3/2的卷积核代替 11 × 11 × 3 / 4 ​ 11\times11\times3/4​ 11×11×3/4​,使第一层卷积输出的结果可以包含更多的中频率特征,对后续网络层中多样化的特征组合提供更多选择,有利于捕捉更细致的特征。

卷积层 C 2 C_2 C2采用了步长2的卷积核,区别于AlexNet中 C 2 C_2 C2的卷积核步长,所以输出的维度有所差异。

1.3 模型特性

​ ZFNet与AlexNet在结构上几乎相同,此部分虽属于模型特性,但准确地说应该是ZFNet原论文中可视化技术的贡献。

  • 可视化技术揭露了激发模型中每层单独的特征图。
  • 可视化技术允许观察在训练阶段特征的演变过程且诊断出模型的潜在问题。
  • 可视化技术用到了多层解卷积网络,即由特征激活返回到输入像素空间。
  • 可视化技术进行了分类器输出的敏感性分析,即通过阻止部分输入图像来揭示那部分对于分类是重要的。
  • 可视化技术提供了一个非参数的不变性来展示来自训练集的哪一块激活哪个特征图,不仅需要裁剪输入图片,而且自上而下的投影来揭露来自每块的结构激活一个特征图。
  • 可视化技术依赖于解卷积操作,即卷积操作的逆过程,将特征映射到像素上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/468381.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

移动应用开发:简易登录页

文章目录 简介一,创建新活动二,设计UI布局三,编写活动代码四,运行应用程序注意 简介 使用Android Studio编写的简单Android 登录应用程序,该应用程序包含一个登录界面,具有账号和密码两个文本框&#xff0…

网络基础:http协议和内外网划分

声明 学习视频来自B站UP主泷羽sec,如涉及侵权马上删除文章 笔记的只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负 泷羽sec的个人空间-泷羽sec个人主页-哔哩哔哩视频https://space.bilibili.com/350329294 一,H…

英飞凌Aurix2G TC3XX GPT12模块详解

英飞凌Aurix2G TC3XX GPT12模块详解 本文主要介绍英飞凌 Aurix2G TC3XX系列芯片GPT12模块硬件原理、MCAL相关配置和部分代码实现。 文章目录 英飞凌Aurix2G TC3XX GPT12模块详解1 模块介绍2 功能介绍2.1 结构2.2 独立运行模式2.2.1 定时器模式2.2.2 门控定时器模式2.2.3 计数…

大数据程序猿不可不看的资料大全

​ 随着大数据技术的发展,大数据程序猿在数据采集、处理、分析、存储等方面的技能需求不断增加。要在这个领域保持竞争力,系统性地学习和掌握大数据工具、技术架构和行业趋势是非常重要的。以下为您提供一份围绕大数据程序猿不可不看的资料大全&#xf…

抓包工具WireShark使用记录

目录 网卡选择: 抓包流程: 捕获过滤器 常用捕获过滤器: 抓包数据的显示 显示过滤器: 常用的显示过滤器: 实际工作中,在平台对接,设备对接等常常需要调试接口,PostMan虽然可以进…

MySQL数据迁移到SQLServer数据库

随着云计算技术的发展以及大数据时代的到来,越来越多的企业开始寻求更加高效、安全的数据管理解决方案。MySQL作为一种开源的关系型数据库管理系统,在互联网应用开发中占据了极其重要的位置;而另一方面,Microsoft SQL Server凭借其…

【STM32开发】-FreeRTOS开发入手学习

一、什么是FreeRTOS? FreeRTOS 是 RTOS 系统的一种,FreeRTOS 十分的小巧,可以在资源有限的微控制器中运行; 1、 FreeRTOS是免费的。 2、许多其他半导体厂商产品的 SDK 包就使用 FreeRTOS 作为其操作系统,尤其是 WIFI、…

【软考】系统分析师第二版 新增章节 第20章微服务系统分析与设计

微服务系统是一类基于微服务架构风格的分布式系统,它将应用程序拆分成多个独立的小型服务,每个服务都运行在独立的进程中,并采用轻量级通信协议进行通信。这些服务可以由不同的团队开发、不同的编程语言编写,并且可以按需部署。微…

【笔记】自动驾驶预测与决策规划_Part6_不确定性感知的决策过程

文章目录 0. 前言1. 部分观测的马尔可夫决策过程1.1 POMDP的思想以及与MDP的联系1.1.1 MDP的过程回顾1.1.2 POMDP定义1.1.3 与MDP的联系及区别POMDP 视角MDP 视角决策次数对最优解的影响 1.2 POMDP的3种常规解法1.2.1 连续状态的“Belief MDP”方法1. 信念状态的定义2. Belief …

【SpringBoot】 黑马大事件笔记-day2

目录 用户部分 实体类属性的参数校验 更新用户密码 文章部分 规定josn日期输出格式 分组校验 上期回顾:【SpringBoot】 黑马大事件笔记-day1 用户部分 实体类属性的参数校验 对应的接口文档: 基本信息 请求路径:/user/update 请求方式&#…

HarmonyOS入门 : 获取网络数据,并渲染到界面上

1. 环境搭建 开发HarmonyOS需要安装DevEco Studio,下载地址 : https://developer.huawei.com/consumer/cn/deveco-studio/ 2. 如何入门 入门HarmonyOS我们可以从一个实际的小例子入手,比如获取网络数据,并将其渲染到界面上。 本文就是基于…

AndroidStudio-视图基础

一、设置视图的宽高 1.在XML文件中设置视图宽高 视图宽度通过属性android:layout_width表达,视图高度通过属性android:layout_height表达,宽高的取值主要有下列三种: (1)wrap_content:表示与内容自适应。对于文本视图来说&…

三菱QD77MS定位模块紧急停止功能

“紧急停止功能” 是通过简单运动模块的外部输入连接用连接器上连接的紧急停止输入,对同服放大器的全部轴进行批量停止的功能。(初始值为“0:有效”。)通过“[r.82]紧急停止有效/无效设置”可以选择紧急停止输入的有效/无效。 [1]控制内容 将“[r82]紧急停止有效/无…

Android JNI 技术入门指南

引言 在Android开发中,Java是一种主要的编程语言,然而,对于一些性能要求较高的场景(如音视频处理、图像处理、计算密集型任务等),我们可能需要使用到C或C等语言来编写底层的高效代码。为了实现Java代码与C…

Js — 定时器

有两种:setInterval 和 setTimeout 间隔时间单位为毫秒 setInterval 每隔指定的毫秒数重复执行一个函数或代码 开启定时器:setInterval(函数,间隔时间) 作用:每隔一段时间调用这个函数 注意:它不是立即执行&#x…

H5播放器EasyPlayer.js 流媒体播放器是否支持npm(yarn) install 安装?

EasyPlayer.js H5播放器是一款功能强大的H5视频播放器,它支持多种流媒体协议播放,包括WebSocket-FLV、HTTP-FLV、HLS(m3u8)、WebRTC等格式的视频流。它不仅支持H.264和H.265编码格式,还具备实时录像、低延时直播等功能…

前端刺客系列----Vue 3 入门介绍

目录 一.什么是 Vue 3? 二.Vue 3 的主要特性 三,Vue3项目实战 四.总结 在前端开发的世界里,Vue.js 作为一款渐进式的 JavaScript 框架,已成为许多开发者的首选工具。自从 Vue 3 发布以来,它带来了许多重要的改进和新特性&…

【论文复现】MSA+抑郁症模型总结(三)

📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀MSA抑郁症模型 热门研究领域:情感计算的横向发展1. 概述2. 论文地址3. 研究背景4. 主要贡献5. 模型结构和代码6. 数据集介绍7. 性…

Linux 实验:日志的备份与恢复 xfs文件系统

添加一个新的硬盘,创建硬盘分区sdc1 设置文件系统格式xfs,提示安装xfsprogs,如果安装失败,在后缀加上--fix-missing直到安装完成为止 mkdir创建空目录data,将sdc1挂载到data,data是根目录下新建的目录&…

应对AI与机器学习的安全与授权管理新挑战,CodeMeter不断创新引领保护方案

人工智能(AI)和机器学习(ML)技术正在快速发展,逐渐应用到全球各类主流系统、设备及关键应用场景中,尤其是在政府、商业和工业组织不断加深互联的情况下,AI和ML技术的影响日益广泛。虽然AI技术的…