[OpenGL]使用OpenGL实现硬阴影效果

一、简介

本文介绍了如何使用OpenGL实现硬阴影效果,并在最后给出了全部的代码。本文基于[OpenGL]渲染Shadow Map,实现硬阴影的流程如下:

  • 首先,以光源为视角,渲染场景的深度图,将light space中的深度图存储到深度缓冲depthTextur中。
  • 然后,以相机为视角,渲染场景。在fragment shader中根据各个片段在light space中的实际深度的与depthTexture中对应坐标中的深度值作对比,假如实际深度大于depthTexture中深度值,说明在light space中,该片段对应的三角面片(点)会被场景中的其他三角面片遮挡,因此在阴影中。否则,说明不在阴影中。

按照本文代码实现完成后,理论上可以得到如下结果:
渲染结果

二、使用OpenGL实现硬阴影

0. 环境需要

  • Linux,或者 windos下使用wsl2。
  • 安装GLFW和GLAD。请参考[OpenGL] wsl2上安装使用cmake+OpenGL教程。
  • 安装glm。glm是个可以只使用头文件的库,因此可以直接下载release的压缩文件,然后解压到include目录下。例如,假设下载的release版本的压缩文件为glm-1.0.1-light.zip。将glm-1.0.1-light.zip复制include目录下,然后执行以下命令即可解压glm源代码:
    unzip glm-1.0.1-light.zip
    
  • 需要下载 stb_image.h 作为加载.png图像的库。将 stb_image.h 下载后放入include/目录下。

1. 项目目录

项目目录

其中:

  • Mesh.hpp 包含了自定义的 Vertex, Texture, 和 Mesh 类,用于加载 obj 模型、加载图片生成纹理。
  • Shader.hpp 用于创建 shader 程序。
  • shadowMap.vertshadowMap.frag是用于 渲染shadow map 的 顶点着色器 和 片段着色器 代码,该shader以light为视角,渲染得到light space下的深度图,并将其存储到depthTexture中。
  • BlinnPhong.vertBlinnPhong.frag是用于 渲染场景,根据depthTexture实现阴影效果的 顶点着色器 和 片段着色器 代码。

下面介绍各部分的代码:

2. CMakeLists.txt代码

cmake_minimum_required(VERSION 3.10)
set(CMAKE_CXX_STANDARD 14)project(OpenGL_Shadow_Mapping)include_directories(include)find_package(glfw3 REQUIRED)
file(GLOB project_file main.cpp glad.c)
add_executable(${PROJECT_NAME} ${project_file})
target_link_libraries(${PROJECT_NAME} glfw)

3. Mesh.hpp 代码

Mesh.hpp 代码与[OpenGL]渲染Shadow Map中的Mesh.hpp基本相同。主要区别是,本文的Mesh在加载模型时,手动在模型下方添加了一个 pedestal,用于显示模型产生的阴影。
另外,本文中的Draw(Shader, GLuint depthTexture)函数是使用两个纹理对象,一个是默认的模型纹理,另一个是传入的参数depthTexture,将其作为shadow map

Mesh.hpp的主要代码如下:

extern unsigned int SCR_WIDTH;
extern unsigned int SCR_HEIGHT;
class Mesh
{public:// mesh Datavector<Vertex> vertices;      // vertex 数据,一个顶点包括 position, normal 和 texture coord 三个信息vector<unsigned int> indices; // index 数据,用于拷贝到 EBO 中Texture texture;unsigned int VAO;Mesh(vector<Vertex> vertices_, vector<unsigned int> indices_, Texture texture_): vertices(vertices_), indices(indices_), texture(texture_){setupMesh();}Mesh(string obj_path, string texture_path = ""){// load objifstream obj_file(obj_path, std::ios::in);if (obj_file.is_open() == false){std::cerr << "Failed to load obj: " << obj_path << "\n";return;}int position_id = 0;int normal_id = 0;int texture_coord_id = 0;string line;while (getline(obj_file, line)){std::istringstream iss(line);std::string prefix;iss >> prefix;if (prefix == "v") // vertex{if (vertices.size() <= position_id){vertices.push_back(Vertex());}iss >> vertices[position_id].Position.x;iss >> vertices[position_id].Position.y;iss >> vertices[position_id].Position.z;position_id++;}else if (prefix == "vn") // normal{if (vertices.size() <= normal_id){vertices.push_back(Vertex());}iss >> vertices[normal_id].Normal.x;iss >> vertices[normal_id].Normal.y;iss >> vertices[normal_id].Normal.z;normal_id++;}else if (prefix == "vt") // texture coordinate{if (vertices.size() <= texture_coord_id){vertices.push_back(Vertex());}iss >> vertices[texture_coord_id].TexCoords.x;iss >> vertices[texture_coord_id].TexCoords.y;texture_coord_id++;}else if (prefix == "f") // face{for (int i = 0; i < 3; ++i){std::string vertexData;iss >> vertexData;unsigned int ver, tex, nor;sscanf(vertexData.c_str(), "%d/%d/%d", &ver, &tex, &nor);indices.push_back(ver - 1);}}}obj_file.close();// 在模型下面加上一个 pedestalint temp_index = vertices.size();vertices.push_back({{-2, -0.8, -2}, {0, 1, 0}, {-1, -1}});vertices.push_back({{-2, -0.8, 2}, {0, 1, 0}, {-1, -1}});vertices.push_back({{2, -0.8, 2}, {0, 1, 0}, {-1, -1}});vertices.push_back({{2, -0.8, -2}, {0, 1, 0}, {-1, -1}});indices.push_back(temp_index + 0);indices.push_back(temp_index + 1);indices.push_back(temp_index + 2);indices.push_back(temp_index + 0);indices.push_back(temp_index + 2);indices.push_back(temp_index + 3);// load textureGLuint textureID;glGenTextures(1, &textureID); // 生成纹理 IDglBindTexture(GL_TEXTURE_2D, textureID); // 绑定纹理,说明接下来对纹理的操作都应用于对象 textureID 上// 设置纹理参数// 设置纹理在 S 方向(水平方向)的包裹方式为 GL_REPEATglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);// 设置纹理在 T 方向(垂直方向)的包裹方式为 GL_REPEATglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);// 设置纹理的缩小过滤方式,当纹理变小时,使用 GL_LINEAR (线性过滤)方式glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);// 设置纹理的放大过滤方式,当纹理变大时,使用 GL_LINEAR (线性过滤)方式glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);// 加载纹理图像int width, height, nrChannels;stbi_set_flip_vertically_on_load(true);unsigned char *data = stbi_load(texture_path.c_str(), &width, &height, &nrChannels, 0);if (data){GLenum format;if (nrChannels == 1)format = GL_RED;else if (nrChannels == 3)format = GL_RGB;else if (nrChannels == 4)format = GL_RGBA;// 生成纹理glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D); // 生成 Mipmaps}else{std::cerr << "Failed to load texture: " << texture_path << "\n";}stbi_image_free(data);           // 释放图像内存glBindTexture(GL_TEXTURE_2D, 0); // 解绑纹理texture.Id = textureID;texture.path = texture_path;setupMesh();}// render the meshvoid Draw(Shader &shader){// draw mesh...}void DrawWithShadowMap(Shader &shader, GLuint shadowMap){// draw meshglActiveTexture(GL_TEXTURE0);             // 激活 纹理单元0glBindTexture(GL_TEXTURE_2D, texture.Id); // 绑定纹理,将纹理texture.id 绑定到 纹理单元0 上glUniform1i(glGetUniformLocation(shader.ID, "texture1"), 0); // 将 blinnPhongShader 中的 texture1 绑定到 纹理单元0glActiveTexture(GL_TEXTURE1);            // 激活 纹理单元1glBindTexture(GL_TEXTURE_2D, shadowMap); // 绑定纹理,将深度纹理 shadowMap 绑定到 纹理单元1 上glUniform1i(glGetUniformLocation(shader.ID, "shadowMap"), 1); // 将 blinnPhongShader 中的 shadowMap 绑定到 纹理单元1glBindVertexArray(VAO);glDrawElements(GL_TRIANGLES, static_cast<unsigned int>(indices.size()), GL_UNSIGNED_INT, 0);glBindTexture(GL_TEXTURE_2D, 0);glBindVertexArray(0);}// 用于打印 depthTexture 数据void printDepthTexture(GLuint textureId){glBindTexture(GL_TEXTURE_2D, textureId); // 绑定纹理,将纹理texture.id 绑定到 纹理单元0 上int width;int height;GLint format;glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_WIDTH, &width);glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_HEIGHT, &height);glGetTexLevelParameteriv(GL_TEXTURE_2D, 0, GL_TEXTURE_INTERNAL_FORMAT, &format);std::cout << "Texture information :\n";std::cout << "width:" << width << ", height:" << height << ", format:" << format << "\n";// return ;// 创建一个缓冲区来存储纹理数据std::vector<GLfloat> textureData(width * height, 0);// 读取纹理数据glGetTexImage(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, GL_FLOAT, textureData.data());std::cout << *max_element(textureData.begin(), textureData.end()) << "\n";std::cout << *min_element(textureData.begin(), textureData.end()) << "\n";glBindTexture(GL_TEXTURE_2D, 0);}void DrawToTexture(Shader &shader, GLuint &depthTexture){// 1. 设置 帧缓存// 2. 设置 纹理 (renderedTexture,由于存储渲染结果)// 3. 设置 深度缓存// 4. 开始渲染// 1. 设置 帧缓存// framebufferGLuint FramebufferName = 0;glGenFramebuffers(1, &FramebufferName);glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);// 2. 设置 纹理 (depthTexture,由于存储渲染结果)// texture// GLuint depthTexture;if (glIsTexture(depthTexture) == false){glGenTextures(1, &depthTexture);}// "Bind" the newly created texture : all future texture functions will modify this texture// 将 depthTexture 绑定到 GL_TEXTURE_2D 上,接下来所有对 TEXTURE_2D 的操作都会应用于 depthTexture 上glBindTexture(GL_TEXTURE_2D, depthTexture);// Give an empty image to OpenGL ( the last "0" )// glTexImage2d() 用于创建并初始化二维纹理数据的函数, 参数含义如下:// 1. 目标纹理类型, GL_TEXTURE_2D 为 2D 类型纹理// 2. 详细级别(mipmap级别),基础图像级别通常设置为0// 3. internal format: 存储格式,GL_DEPTH_COMPONENT16 表示为 16位的深度缓存// 4,5. 纹理宽,高,设为800, 600(与窗口同宽、高)// 6. 边框宽度,设为0// 7. 传入数据的纹理格式,此处选择 GL_DEPTH_COMPONENT (由于我们使用 null// 指针处地数据初始化纹理,不管此处选择什么对结果都无影响)// 8. format 数据类型,每个颜色通道内的数据类型,设为 GL_FLOAT,数值范围在 [0.0,1.0]// 9. 指向纹理图像数据(初始数据)的指针,设为0(null),使用空置初始化纹理glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16, 800, 600, 0, GL_DEPTH_COMPONENT, GL_FLOAT, nullptr);// Poor filtering// 设置 GL_TEXTURE_2D 纹理的过滤方式glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);// 设置 GL_TEXTURE_2D 纹理的边缘处理方式glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);// 3. 设置 深度缓存// The depth buffer// 为上面的 framebuffer 申请一个 depth buffer (用于正确绘制)// 手动申请的 framebuffer 不会自动带有 depth buffer or template buffer or color buffer,必须手动设置// 此处收到设置一个 depth buffer// 由于正确地渲染结果(主要根据渲染场景的深度信息确定哪些部分需要渲染,哪些部分可以丢弃,跟正常渲染流程一样)GLuint depthrenderbuffer;glGenRenderbuffers(1, &depthrenderbuffer);// 绑定渲染缓冲对象,指定后续的 操作(设置) 目标为 depthrederbufferglBindRenderbuffer(GL_RENDERBUFFER, depthrenderbuffer);// 指定渲染缓冲的内部格式为深度格式,意味着这个缓冲区将用于存储深度信息glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, 800, 600);// 将渲染缓冲对象附加到当前绑定的帧缓冲对象glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, depthrenderbuffer);// Set "renderedTexture" as our colour attachement #0// 设置 renderedTexture 附加到 帧缓冲对象上, 并设置 深度缓冲槽位 为 GL_DEPTH_ATTACHMENTglFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthTexture, 0);// Set the list of draw buffers.// 设置不渲染任何 color , 因为我们关心的只是 depthglDrawBuffer(GL_NONE);// Always check that our framebuffer is okif (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE){std::cout << "Error";return;}// Render to our framebuffer// 绑定 FramebufferName,接下来的渲染将写入到 FramebufferName 帧缓存中glBindFramebuffer(GL_FRAMEBUFFER, FramebufferName);// 申请生成 depth buffer 后尽量(必须)手动 clear 一下glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// 4. 开始渲染// 开始渲染,将渲染结果存储到 renderedTexture// draw meshglBindVertexArray(VAO);glDrawElements(GL_TRIANGLES, static_cast<unsigned int>(indices.size()), GL_UNSIGNED_INT, 0);glBindTexture(GL_TEXTURE_2D, 0);glBindVertexArray(0);// 解绑 FramebufferName,接下来的渲染将写入默认的帧缓冲(屏幕) 中glBindFramebuffer(GL_FRAMEBUFFER, 0);/****************/// printDepthTexture(depthTexture);}...
};

4. shadowMap shader 代码

由于我们只需要使用场景渲染shader得到场景的深度缓冲,因此只需要在 shadow map vertex shader 中处理顶点的坐标即可,无需使用纹理、光照模型等与深度信息无关的数据。
shadow map shader的顶点着色器代码如下:
shadowMap.vert:

#version 330 core
layout(location = 0) in vec3 aPos;
layout(location = 1) in vec3 aNor;
layout(location = 2) in vec2 aTexCoord;uniform mat4 lightMVP;void main() {// 裁剪空间坐标系 (clip space) 中 点的位置gl_Position = lightMVP * vec4(aPos, 1.0f);
}

片段着色器无需处理颜色、纹理、光照等信息,因此shadow map shader的片段着色器可以空着,如下:
shadowMap.frag:

#version 330 core
void main() {// do nothing
}

5. Blinn-Phong shader 代码

渲染场景的 Blinn-Phong shader使用Blinn-Phong模型渲染场景,并且根据输入的 shadowMap 处理产生阴影效果。
Blinn-Phong shader的顶点着色器和片段着色器代码:
Blinn-Phong.vert:

#version 330 core
layout(location = 0) in vec3 aPos;
layout(location = 1) in vec3 aNor;
layout(location = 2) in vec2 aTexCoord;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
uniform mat4 lightMVP;out vec3 vertexPos;
out vec3 vertexNor;
out vec2 textureCoord;out vec4 vertexPosLightSpace;void main() {textureCoord = aTexCoord;// 裁剪空间坐标系 (clip space) 中 点的位置gl_Position = projection * view * model * vec4(aPos, 1.0f);// 世界坐标系 (world space) 中 点的位置vertexPos = (model * vec4(aPos, 1.0f)).xyz;// 世界坐标系 (world space) 中 点的法向vertexNor = mat3(transpose(inverse(model))) * aNor;vertexPosLightSpace = lightMVP * vec4(aPos, 1.0f);
}

Blinn-Phong.frag:

#version 330 core
out vec4 FragColor;in vec3 vertexPos;
in vec3 vertexNor;
in vec2 textureCoord;
in vec4 vertexPosLightSpace;
// vertexPosLightSpaceuniform vec3 cameraPos;
uniform vec3 lightPos;
uniform vec3 k;uniform sampler2D texture1;uniform sampler2D shadowMap;
// 计算阴影系数 shadow
// 如果该片段在阴影中 返回 1.0
// 如果该片段不在阴影中 返回 0.0
float ShadowCalculation(vec4 fragPosLightSpace, vec3 normalDir, vec3 lightDir) {// 执行透视除法vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;if (projCoords.z > 1.0) {// 所有在 视锥远平面 之外的都视作不被遮挡return 0.0;}// 变换到[0,1]的范围projCoords = projCoords * 0.5 + 0.5;// 取得最近点的深度float closestDepth = texture(shadowMap, projCoords.xy).r;// 取得当前片段在光源视角下的实际深度float currentDepth = projCoords.z;// 检查当前片段是否在阴影中float bias = max(0.05 * (1.0 - dot(normalDir, lightDir)), 0.005); // 使用 bais 处理阴影失真的问题float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;return shadow;
}void main() {vec3 lightColor = vec3(1.0f, 1.0f, 1.0f);// Ambient// Ia = ka * Lafloat ambientStrenth = k[0];vec3 ambient = ambientStrenth * lightColor;// Diffuse// Id = kd * max(0, normal dot light) * Ldfloat diffuseStrenth = k[1];vec3 normalDir = normalize(vertexNor);vec3 lightDir = normalize(lightPos - vertexPos);vec3 diffuse =diffuseStrenth * max(dot(normalDir, lightDir), 0.0) * lightColor;// Specular (Phong)// Is = ks * (view dot reflect)^s * Ls// float specularStrenth = k[2];// vec3 viewDir = normalize(cameraPos - vertexPos);// vec3 reflectDir = reflect(-lightDir, normalDir);// vec3 specular = specularStrenth *//                 pow(max(dot(viewDir, reflectDir), 0.0f), 2) * lightColor;// Specular (Blinn-Phong)// Is = ks * (normal dot halfway)^s Lsfloat specularStrenth = k[2];vec3 viewDir = normalize(cameraPos - vertexPos);vec3 halfwayDir = normalize(lightDir + viewDir);vec3 specular = specularStrenth *pow(max(dot(normalDir, halfwayDir), 0.0f), 2) * lightColor;// Obejct colorvec3 objectColor = vec3(0.8, 0.8, 0.8);if (textureCoord.x >= 0 && textureCoord.y >= 0) {objectColor = texture(texture1, textureCoord).xyz;}// shadowfloat shadow = ShadowCalculation(vertexPosLightSpace, normalDir, lightDir);// Color = Ambient + Diffuse + Specular -->// Color = Ambient + (1-shadow) * (Diffuse + Specular), 阴影只会影响 diffuse 和 specular 项// I = Ia + Id + Is --> I = Ia + (1-shodaw)*(Id + Is)FragColor = vec4((ambient + (1.0 - shadow) * (diffuse + specular)) * objectColor, 1.0f);
}

6. main.cpp 代码

6.1). 代码整体流程

  1. 初始化glfw,glad,窗口
  2. 编译 shader 程序
  3. 加载obj模型、纹理图片
  4. 设置光源和相机位置,Blinn-phong模型参数
  5. 开始渲染
    5.1 使用 shadowShader, 渲染场景,将场景的深度缓冲存储到 depthTexture 中
    5.2 使用 blinnPhongShader, 渲染场景,并且使用 depthTexture 实现阴影效果
  6. 释放资源

6.2). main.cpp代码

#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include "Shader.hpp"
#include "Mesh.hpp"#include "glm/ext.hpp"
#include "glm/mat4x4.hpp"#include <random>
#include <iostream>
// 用于处理窗口大小改变的回调函数
void framebuffer_size_callback(GLFWwindow *window, int width, int height);
// 用于处理用户输入的函数
void processInput(GLFWwindow *window);// 指定窗口默认width和height像素大小
unsigned int SCR_WIDTH = 800;
unsigned int SCR_HEIGHT = 600;/************************************/int main()
{/****** 1.初始化glfw, glad, 窗口 *******/// glfw 初始化 + 配置 glfw 参数glfwInit();glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);// 在创建窗口之前glfwWindowHint(GLFW_SAMPLES, 4); // 设置多重采样级别为4// glfw 生成窗口GLFWwindow *window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);if (window == NULL){// 检查是否成功生成窗口,如果没有成功打印出错信息并且退出std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();return -1;}// 设置窗口window的上下文glfwMakeContextCurrent(window);// 配置window变化时的回调函数glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);// 使用 glad 加载 OpenGL 中的各种函数if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){std::cout << "Failed to initialize GLAD" << std::endl;return -1;}// 启用 深度测试glEnable(GL_DEPTH_TEST);// 启用 多重采样抗锯齿glEnable(GL_MULTISAMPLE);// glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // 使用线框模式,绘制时只绘制 三角形 的轮廓glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); // 使用填充模式,绘制时对 三角形 内部进行填充/************************************//****** 2.编译 shader 程序 ******/// 渲染shadow map 的 shaderShader shadowMapShader("../resources/shadowMap.vert", "../resources/shadowMap.frag");// 渲染场景的shaderShader blinnPhongShader("../resources/Blinn-Phong.vert", "../resources/Blinn-Phong.frag");// 渲染depth的 shader// Shader showDepthShader("../resources/showDepth.vert", "../resources/showDepth.frag");/************************************//****** 3.加载obj模型、纹理图片、Phong模型参数 ******/// 3.1 scene meshMesh ourModel("../resources/models/spot/spot.obj", "../resources/models/spot/spot.png"); // dairy cowTexture depthTexture;/************************************//****** 4.设置光源和相机位置,Phong(Blinn-phong)模型参数 ******/// I = Ia + Id + Is// Ia = ka * La// Id = kd * (normal dot light) * Ld// Is = ks * (reflect dot view)^s * Ls// 模型参数 ka, kd, ksfloat k[] = {0.1f, 0.7f, 0.2f}; // ka, kd, ks// 光源位置glm::vec3 light_pos = glm::vec3(-2.0f, 2.0f, 0.0f);// 相机位置glm::vec3 camera_pos = glm::vec3(0.0f, 1.0f, 1.5f);/************************************//****** 5.开始渲染 ******/float rotate = 90.0f;while (!glfwWindowShouldClose(window)){rotate += 0.5f;// input// -----processInput(window);// render// ------glClearColor(0.2f, 0.3f, 0.3f, 1.0f);// 清除颜色缓冲区 并且 清除深度缓冲区glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// 5.1 使用 shadowShader, 渲染场景,将场景的深度缓冲存储到 depthTexture 中shadowMapShader.use();// 设置 light_MVP 矩阵, 假设以 light 为视角,渲染 light 视角下的场景深度图// light model 矩阵glm::mat4 model = glm::mat4(1.0f);model = glm::translate(model, glm::vec3(0.0f, 0.0f, 0.0f));model = glm::rotate(model, glm::radians(0.0f), glm::vec3(1.0f, 0.0f, 0.0f));model = glm::rotate(model, glm::radians(rotate), glm::vec3(0.0f, 1.0f, 0.0f));model = glm::rotate(model, glm::radians(0.0f), glm::vec3(0.0f, 0.0f, 1.0f));model = glm::scale(model, glm::vec3(0.5f, 0.5f, 0.5f));// light view 矩阵glm::mat4 view = glm::mat4(1.0f);view = glm::lookAt(light_pos, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f));// light projection 矩阵glm::mat4 projection = glm::mat4(1.0f);// 假设 light 为平行光,因此使用 正交投影 orthoprojection = glm::ortho(-2.0, 2.0, -2.0, 2.0, 0.1, 5.0);glm::mat4 lightMVP = projection * view * model;shadowMapShader.setMat4("lightMVP", lightMVP);ourModel.DrawToTexture(shadowMapShader, depthTexture.Id);///// 5.2 使用 blinnPhongShader, 渲染场景,并且使用 depthTexture 实现阴影效果blinnPhongShader.use();glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// 设置 camera_MVP 矩阵, 假设以 camera 为视角,渲染 camera 视角下的场景深度图// camera model 矩阵model = glm::mat4(1.0f);model = glm::translate(model, glm::vec3(0.0f, 0.0f, 0.0f));model = glm::rotate(model, glm::radians(0.0f), glm::vec3(1.0f, 0.0f, 0.0f));model = glm::rotate(model, glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f));model = glm::rotate(model, glm::radians(0.0f), glm::vec3(0.0f, 0.0f, 1.0f));model = glm::scale(model, glm::vec3(0.5f, 0.5f, 0.5f));// camera view 矩阵view = glm::lookAt(camera_pos, glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f));// camera projection 矩阵projection = glm::perspective(glm::radians(60.0f), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);blinnPhongShader.setMat4("model", model);blinnPhongShader.setMat4("view", view);blinnPhongShader.setMat4("projection", projection);blinnPhongShader.setVec3("k", k[0], k[1], k[2]);blinnPhongShader.setVec3("cameraPos", camera_pos);blinnPhongShader.setVec3("lightPos", light_pos);blinnPhongShader.setMat4("lightMVP", lightMVP);// 使用 depthTexture 作为 shadow map textureourModel.DrawWithShadowMap(blinnPhongShader, depthTexture.Id);///glfwSwapBuffers(window); // 在gfw中启用双缓冲,确保绘制的平滑和无缝切换glfwPollEvents(); // 用于处理所有挂起的事件,例如键盘输入、鼠标移动、窗口大小变化等事件}/************************************//****** 6.释放资源 ******/// glfw 释放 glfw使用的所有资源glfwTerminate();/************************************/return 0;
}// 用于处理用户输入的函数
void processInput(GLFWwindow *window)
{// 当按下 Esc 按键时调用 glfwSetWindowShouldClose() 函数,关闭窗口if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS){glfwSetWindowShouldClose(window, true);}
}// 在使用 OpenGL 和 GLFW 库时,处理窗口大小改变的回调函数
// 当窗口大小发生变化时,确保 OpenGL 渲染的内容能够适应新的窗口大小,避免图像被拉伸、压缩或出现其他比例失真的问题
void framebuffer_size_callback(GLFWwindow *window, int width, int height)
{SCR_WIDTH = width;SCR_HEIGHT = height;glViewport(0, 0, width, height);
}

7. 编译运行及结果

编译运行:

cd ./build
cmake ..
make
./OpenGL_Shadow_Mapping 

渲染结果:
渲染结果

三、全部代码及模型文件

全部代码以及模型文件可以在[OpenGL]使用OpenGL实现硬阴影效果中下载。

四、参考

[1].opengl-tutorial-教程14:渲染到纹理
[2].LearnOpenGL-高级OpenGL-帧缓冲
[3].LearnOpenGL-高级OpenGL-阴影-阴影映射

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/468638.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

反序列化漏洞浅析

Apache InLong 是开源的高性能数据集成框架&#xff0c;支持数据接入、数据同步和数据订阅&#xff0c;同时支持批处理和流处理&#xff0c;方便业务构建基于流式的数据分析、建模和应用。浅析Apache InLong < 1.12.0 JDBC反序列化漏洞&#xff08;CVE-2024-26579&#xff0…

基于微信小程序的移动学习平台的设计与实现+ssm(lw+演示+源码+运行)

摘 要 由于APP软件在开发以及运营上面所需成本较高&#xff0c;而用户手机需要安装各种APP软件&#xff0c;因此占用用户过多的手机存储空间&#xff0c;导致用户手机运行缓慢&#xff0c;体验度比较差&#xff0c;进而导致用户会卸载非必要的APP&#xff0c;倒逼管理者必须改…

SQL中的内连接(inner join)、外连接(left|right join、full join)以及on关键字中涉及分区筛选、null解释

一、简介 本篇幅主要介绍了&#xff1a; SQL中内连接&#xff08;inner join&#xff09;、外连接&#xff08;left join、right join、full join&#xff09;的机制;连接关键字on上涉及表分区筛选的物理执行及引擎优化&#xff1b;null在表关联时的情况与执行&#xff1b; …

【Linux】软硬链接和动静态库

&#x1f525; 个人主页&#xff1a;大耳朵土土垚 &#x1f525; 所属专栏&#xff1a;Linux系统编程 这里将会不定期更新有关Linux的内容&#xff0c;欢迎大家点赞&#xff0c;收藏&#xff0c;评论&#x1f973;&#x1f973;&#x1f389;&#x1f389;&#x1f389; 文章目…

Orleans集群及Placement设置

服务端界面使用相同的clusterid和serviceid&#xff0c;相同ip地址&#xff0c;不同网关端口号和服务端口号&#xff0c;启动两个silo服务&#xff0c;并使用MySql数据库做Silo间信息同步&#xff0c;实现集群。 silo服务启动代码如下&#xff08;从nuget下载Microsoft.Orleans…

iphone怎么删除重复的照片的新策略

Phone用户常常面临存储空间不足的问题&#xff0c;其中一个主要原因是相册中的重复照片。这些重复项不仅占用了大量的存储空间&#xff0c;还会影响设备的整体性能。本文将向您展示iphone怎么删除重复的照片的方法&#xff0c;包括一些利用工具来自动化这个过程的创新方法。 识…

C++ 的第一个程序

目录 一 . C的第一个程序 二 . 命名空间 2.1 namespace的价值 2.1 namespace 的定义 7.3 命名空间的使用 三 . C输入&输出 四 . 缺省参数 五 . 函数重载 六 . 引用 6.1 引用的概念和定义 6.2 引用的特性 6.3 引用的使用 6.4 const 引用 6.5 指针和引用的关系&…

C#开发基础:WPF和WinForms关于句柄使用的区别

1、前言 在 Windows 应用程序开发中&#xff0c;WPF&#xff08;Windows Presentation Foundation&#xff09;和 WinForms&#xff08;Windows Forms&#xff09;是两种常见的用户界面&#xff08;UI&#xff09;框架。它们各自有不同的架构和处理方式&#xff0c;其中一个显…

WPS Office手机去广高级版

工具介绍功能特点 WPS Office是使用人数最多的移动办公软件&#xff0c;独有手机阅读模式&#xff0c;字体清晰翻页流畅&#xff1b;完美支持文字&#xff0c;表格&#xff0c;演示&#xff0c;PDF等51种文档格式&#xff1b;新版本具有海量精美模版及高级功能 安装环境 [名称…

【Three.js基础学习】21.Realistic rendering

前言 课程回顾 渲染器 1.色调映射 值意在将高动态范围](HDR)值转换为低动态范围(LDR) Three.is中的色调映射实际上会伪造将LDR转换为HDR的过程&#xff0c;即使颜色不是HDR&#xff0c; 结果会产生非常逼真的渲染效果 THREE .NoToneMapping (default) 无色调映射 THREE.Linear…

TeamTalk知识点梳理一(单聊)

文章目录 db_proxy_serverdb_proxy_server reactor响应处理流程连接池redis连接池MySQL连接池 单聊消息消息如何封装&#xff1f;如何保证对端完整解析一帧消息&#xff1f;协议格式&#xff1f;单聊消息流转流程消息序号&#xff08;msg_id &#xff09;为什么使用redis生成&a…

LLaMA-Factory学习笔记(1)——采用LORA对大模型进行SFT并采用vLLM部署的全流程

该博客是我根据自己学习过程中的思考与总结来写作的&#xff0c;由于初次学习&#xff0c;可能会有错误或者不足的地方&#xff0c;望批评与指正。 1. 安装 1.1 LLaMA-Factory安装 安装可以参考官方 readme &#xff08;https://github.com/hiyouga/LLaMA-Factory/blob/main/…

Linux -- 进程初印象

目录 预备知识 切入点 PCB 看见进程 pid getpid 函数 预备知识 Linux -- 冯诺依曼体系结构&#xff08;硬件&#xff09;-CSDN博客https://blog.csdn.net/2301_76973016/article/details/143598784?spm1001.2014.3001.5501 Linux -- 操作系统&#xff08;软件&#xf…

342--358作业整理(错误 + 重点)

目录 1. 在需要运行的类中 定义 main 方法 2. this 。访问逻辑&#xff1a;先访问本类中&#xff0c;再访问父类中可以访问的成员&#xff08;不包括和本类中重名的成员&#xff09; 3. super 。访问逻辑&#xff1a;super&#xff08;父类对象&#xff09;直接访问父类及以…

Jekins篇(搭建/安装/配置)

目录 一、环境准备 1. Jenkins安装和持续集成环境配置 2. 服务器列表 3. 安装环境 Jekins 环境 4. JDK 环境 5. Maven环境 6. Git环境 方法一&#xff1a;yum安装 二、JenKins 安装 1. JenKins 访问 2. jenkins 初始化配置 三、Jenkins 配置 1. 镜像配置 四、Mave…

【Linux】冯诺依曼体系结构

目录 一、冯诺依曼体系结构二、冯诺依曼体系结构的基本组成三、关于冯诺依曼体系结构的一些问题结尾 一、冯诺依曼体系结构 冯诺依曼体系结构&#xff0c;也称为普林斯顿结构&#xff0c;是现代计算机设计的基础框架。这一体系结构由数学家冯诺依曼在20世纪40年代提出&#xf…

M1M2 MAC安装windows11 虚拟机的全过程

M1/M2 MAC安装windows11 虚拟机的全过程 这两天折腾了一下windows11 arm架构的虚拟机&#xff0c;将途中遇到的坑总结一下。 1、虚拟机软件&#xff1a;vmware fusion 13.6 或者 parallel 19 &#xff1f; 结论是&#xff1a;用parellel 19。 这两个软件都安装过&#xff0…

NAT、代理服务与内网穿透技术全解析

&#x1f351;个人主页&#xff1a;Jupiter. &#x1f680; 所属专栏&#xff1a;Linux从入门到进阶 欢迎大家点赞收藏评论&#x1f60a; 目录 NAT 技术背景NAT IP 转换过程NAPTNAT 技术的缺陷 代理服务器正向代理工作原理功能特点应用场景 反向代理基本原理应用场景 NAT 和代理…

优选算法 - 1 ( 双指针 移动窗口 8000 字详解 )

一&#xff1a;双指针 1.1 移动零 题目链接&#xff1a;283.移动零 class Solution {public void moveZeroes(int[] nums) {for(int cur 0, dest -1 ; cur < nums.length ; cur){if(nums[cur] 0){}else{dest; // dest 先向后移动⼀位int tmp nums[cur];nums[cur] num…

qt配合映美精取图开发

最近开发一个项目&#xff0c;用映美精相机配合halcon做取图开发&#xff0c;由于网上资料小特意写个记录。到映美精官网下载驱动&#xff0c;映美精官网&#xff0c;下载映美精的工具开发包SDK 映美精的SDK下载SDK后找到classlib文件夹 里面就是SDK新建一个qt程序&#xff0c…