YOLO即插即用---PConv

Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks

论文地址:

1. 论文解决的问题

2. 解决问题的方法

3. PConv 的适用范围

4. PConv 在目标检测中的应用

5. 评估方法

6. 潜在挑战

7. 未来研究方向

8.即插即用代码


论文地址:

2303.03667icon-default.png?t=O83Ahttps://arxiv.org/pdf/2303.03667

1. 论文解决的问题

这篇论文主要解决的是神经网络的运行速度问题。尽管近年来神经网络的性能突飞猛进,但其高延迟和高计算量也限制了其在实际应用中的推广。为了解决这个问题,研究者们通常关注降低浮点运算次数 (FLOPs),但论文指出,单纯降低 FLOPs 并不一定能带来相应的延迟降低。

2. 解决问题的方法

论文分析了导致低延迟的主要原因,发现是运算符频繁的内存访问导致的。因此,论文提出了一个新的运算符——部分卷积 (PConv),它通过减少冗余计算和内存访问来更有效地提取空间特征。

PConv 的原理

  • PConv 只对输入通道的一部分应用常规卷积,而其余通道则保持不变。

  • 通过这种方式,PConv 在降低 FLOPs 的同时,也减少了内存访问次数,从而提高了运行速度。

  • 为了充分利用所有通道的信息,PConv 通常与逐点卷积 (PWConv) 结合使用,形成一个 T 形的感受野,更专注于中心位置。

3. PConv 的适用范围

PConv 可以应用于各种需要提取空间特征的神经网络任务,例如:

  • 图像分类: PConv 可以替代现有的卷积运算符,例如深度可分离卷积 (DWConv) 和分组卷积 (GConv),从而提高运行速度。

  • 目标检测: PConv 可以用于特征提取网络,例如骨干网络,从而提高检测速度。

  • 语义分割: PConv 可以用于特征提取网络,例如编码器,从而提高分割速度。

4. PConv 在目标检测中的应用

PConv 在目标检测中的应用位置

  • 骨干网络: PConv 可以用于替代骨干网络中的 DWConv 或 GConv,从而提高特征提取速度。

  • 特征金字塔网络 (FPN): PConv 可以用于替代 FPN 中的 DWConv 或 GConv,从而提高多尺度特征提取速度。

  • 注意力机制: PConv 可以用于改进注意力机制,例如 Squeeze-and-Excitation (SE) 块,从而提高注意力机制的效率。

PConv 在目标检测中的优势

  • 提高检测速度: PConv 可以降低目标检测的推理时间,从而提高检测速度。

  • 提高检测精度: PConv 可以提取更丰富的特征,从而提高检测精度。

  • 降低计算量: PConv 可以降低目标检测的计算量,从而降低对计算资源的需求。

5. 评估方法

为了评估 PConv 在目标检测中的应用效果,可以使用以下指标:

  • 平均精度 (AP): 评估目标检测算法的精度。

  • 平均精度均值 (mAP): 评估目标检测算法的平均精度。

  • 推理时间: 评估目标检测算法的运行速度。

  • 计算量: 评估目标检测算法的计算复杂度。

6. 潜在挑战

尽管 PConv 在目标检测中具有很大的潜力,但也存在一些潜在挑战:

  • 参数调整: PConv 的性能可能受到参数设置的影响,例如部分比例和卷积核大小。

  • 与现有模型的兼容性: PConv 需要与现有的目标检测模型进行整合,这可能需要进行一些修改。

  • 训练时间: PConv 可能需要更长的训练时间才能达到最佳性能。

7. 未来研究方向

未来研究方向可以包括:

  • 改进 PConv 的设计: 探索更有效的 PConv 设计,例如不同的部分比例和卷积核大小。

  • 将 PConv 应用于其他目标检测模型: 将 PConv 应用于其他目标检测模型,例如 YOLO 和 SSD。

  • 探索 PConv 在其他视觉任务中的应用: 探索 PConv 在其他视觉任务中的应用,例如图像检索和视频理解。

PConv 是一种很有潜力的运算符,可以用于提高目标检测的速度和精度。将 PConv 应用于目标检测模型,可以降低推理时间、提高检测精度,并降低对计算资源的需求。未来研究可以进一步探索 PConv 的设计、与其他模型的兼容性,以及在其他视觉任务中的应用。

8.即插即用代码

from torch import nn
import torch
class Partial_conv3(nn.Module):def __init__(self, dim, n_div, forward):super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x):# only for inferencex = x.clone()  # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x):# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xif __name__ == '__main__':block = Partial_conv3(64, 2, 'split_cat').cuda()input = torch.rand(3, 64, 64, 64).cuda() #输入shape b c h woutput = block(input)print(input.size(), output.size())

大家对于YOLO改进感兴趣的可以进群了解,群中有答疑,(QQ群:828370883)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/469320.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Fortran安装(vscode+gcc+Python)

编写时间: 2024年11月7日 环境配置: gcc VScode Python 条件: Windows 10 x64 VMware虚拟机 前言 这是我出的第2个关于Fortran安装的教程,由于上一个方法(你可以在本专栏里找到)对储存空间的要求比较…

ModuleNotFoundError: No module named ‘_ssl‘ centos7中的Python报错

报错 ModuleNotFoundError: No module named ‘_ssl’ 解决步骤: 1.下载openssl wget https://www.openssl.org/source/openssl-3.0.7.tar.gz tar -zxvf openssl-3.0.7.tar.gz cd openssl-3.0.72.编译安装 ./config --prefix/usr/local/openssl make make install3…

TensorFlow|猫狗识别

🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 要求: 了解model.train_on_batch()并运用了解tqdm,并使用tqdm实现可视化进度条 🍻 拔高(可选)&…

Python学习从0到1 day27 Python 高阶技巧 ③ 设计模式 — 单例模式

此去经年,再难同游 —— 24.11.11 一、什么是设计模式 设计模式是一种编程套路,可以极大的方便程序的开发最常见、最经典的设计模式,就是我们所学习的面向对象了。 除了面向对象外,在编程中也有很多既定的套路可以方便开发,我们称之为设计模…

【算法速刷(9/100)】LeetCode —— 42.接雨水

目录 自我解法 官方解法 解法一:动态规划、前后缀 解法二:单调栈 自我解法 这道题刚拿到的时候,第一时间的想法是将其想象成MC一样的方块世界,如何去生成水一样的去解决。后来发现有点复杂化了,因为题目只需要累计…

Spring学习笔记(四)

二十一、Spring事务详解 &#xff08;一&#xff09;、Spring基于XML的事务配置 1.环境搭建 1.1 构建maven工程&#xff0c;添加相关技术依赖 <dependencies><dependency><groupId>org.springframework</groupId><artifactId>spring-context…

区块链技术在知识产权保护中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 区块链技术在知识产权保护中的应用 区块链技术在知识产权保护中的应用 区块链技术在知识产权保护中的应用 引言 区块链技术概述 …

NLP论文速读(NeurIPS2024)|使用视觉增强的提示来增强视觉推理

论文速读|Enhancing LLM Reasoning via Vision-Augmented Prompting 论文信息&#xff1a; 简介: 这篇论文试图解决的问题是大型语言模型&#xff08;LLMs&#xff09;在处理包含视觉和空间线索的推理问题时的局限性。尽管基于LLMs的推理框架&#xff08;如Chain-of-Thought及其…

Qt_day7_文件IO

目录 文件IO 1. QFileDialog 文件对话框&#xff08;熟悉&#xff09; 2. QFileInfo 文件信息类&#xff08;熟悉&#xff09; 3. QFile 文件读写类&#xff08;掌握&#xff09; 4. UI操作与耗时操作&#xff08;掌握&#xff09; 5. 多线程&#xff08;掌握&#xff09;…

如何管理好自己的LabVIEW项目

在LabVIEW项目开发中&#xff0c;项目管理对于提高开发效率、确保项目质量、减少错误和维护成本至关重要。以下从项目规划、代码管理、测试与调试、版本控制、团队协作等方面&#xff0c;分享LabVIEW项目管理的体会。 ​ 1. 项目规划与需求分析 关键步骤&#xff1a; 需求分析…

三周精通FastAPI:40 部署应用程序或任何类型的 Web API 概念

官方文档&#xff1a;部署概念 - FastAPI 部署概念 在部署 FastAPI 应用程序或任何类型的 Web API 时&#xff0c;有几个概念值得了解&#xff0c;通过掌握这些概念您可以找到最合适的方法来部署您的应用程序。 一些重要的概念是&#xff1a; 安全性 - HTTPS启动时运行重新…

【算法一周目】双指针(1)

目录 1.双指针介绍 2.移动零 解题思路 C代码实现 3.复写零 解题思路 C代码实现 4.快乐数 解题思路 C代码实现 5.盛水最多的容器 解题思路 C代码实现 1.双指针介绍 常见的双指针有两种形式&#xff0c;一种是对撞指针&#xff0c;一种是快慢指针。 对撞指针&#x…

ARXML汽车可扩展标记性语言规范讲解

ARXML: Automotive Extensible Markup Language &#xff08;汽车可扩展标记语言&#xff09; xmlns: Xml name space &#xff08;xml 命名空间&#xff09; xsd: Xml Schema Definition (xml 架构定义) 1、XML与HTML的区别&#xff0c;可扩展。 可扩展&#xff0c;主要是…

自监督学习:机器学习的未来新方向

引言 自监督学习&#xff08;Self-Supervised Learning, SSL&#xff09;是近年来机器学习领域的一个重要发展方向&#xff0c;迅速成为许多研究和应用的热点。与传统的监督学习不同&#xff0c;自监督学习利用未标注数据&#xff0c;通过设计自我生成标签的任务&#xff0c;帮…

FFMPEG录屏(22)--- Linux 下基于X11枚举所有显示屏,并获取大小和截图等信息

众人拾柴火焰高&#xff0c;github给个star行不行&#xff1f; open-traa/traa traa is a versatile project aimed at recording anything, anywhere. The primary focus is to provide robust solutions for various recording scenarios, making it a highly adaptable tool…

多媒体信息检索

文章目录 一、绪论二、文本检索 (Text Retrieval)(一) 索引1.倒排索引2.TF-IDF (二) 信息检索模型 (IR模型&#xff0c;Information Retrieval)1.布尔模型 (Boolean模型)(1)扩展的布尔模型 (两个词)(2)P-Norm模型 (多个词) 2.向量空间模型 (Vector Space Model&#xff0c;VSM)…

MySql-8.0.40安装详细教程

文章目录 原创下载安装包安装配置初始化MySQL数据库安装mysql服务并启动启动MySQL服务连接MySQL配置环境变量 原创 MySql-8.0.26安装详细教程&#xff08;保姆级&#xff09; 下载安装包 MySQL Community Downloads 直接到选择MySQL Community Server版本页面 MySQL Commun…

openai Realtime API (实时语音)

https://openai.com/index/introducing-the-realtime-api/ 官方demo https://github.com/openai/openai-realtime-console 官方demo使用到的插件 https://github.com/openai/openai-realtime-api-beta?tabreadme-ov-file 装包配置 修改yarn.lock 这个包是从github下载的 &q…

杨辉三角-一维数组与二维数组解法

这种问题是很有规律的 这里 总结一下 这类问题输出&#xff1a;对称 且数据相同的很多 就比如首位都是1 如果计算中间值遇到困难 可以试着把边界值单独输出 一维数组 // // Created by 徐昌真 on 2024/11/11. // #include <stdio.h> //一维数组 int main() {int n; /…

无人机反制技术与方法:主动防御,被动防御技术原理详解

无人机反制技术与方法主要分为主动防御和被动防御两大类&#xff0c;以下是关于这两类防御技术的原理详解&#xff1a; 主动防御技术原理 主动防御系统旨在通过直接干扰或摧毁来攻击入侵的无人机。这类系统通常包括电子干扰、激光武器、定向能武器以及硬杀伤手段&#xff08;如…