5. langgraph中的react agent使用 (从零构建一个react agent)

1. 定义 Agent 状态

首先,我们需要定义 Agent 的状态,这包括 Agent 所持有的消息。

from typing import (Annotated,Sequence,TypedDict,
)
from langchain_core.messages import BaseMessage
from langgraph.graph.message import add_messagesclass AgentState(TypedDict):messages: Annotated[Sequence[BaseMessage], add_messages]

2. 初始化模型和工具

接下来,我们初始化一个 ChatOpenAI 模型,并定义一个工具 get_weather

from langchain_openai import ChatOpenAI
from langchain_core.tools import toolmodel = ChatOpenAI(temperature=0,model="glm-4-plus",openai_api_key="your_api_key",openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)@tool
def get_weather(location: str):"""Call to get the weather from a specific location."""# This is a placeholder for the actual implementation# Don't let the LLM know this though 😊if any([city in location.lower() for city in ["sf", "san francisco"]]):return "It's sunny in San Francisco, but you better look out if you're a Gemini 😈."else:return f"I am not sure what the weather is in {location}"tools = [get_weather]model = model.bind_tools(tools)

3. 定义工具节点和模型调用节点

我们需要定义工具节点和模型调用节点,以便在 Agent 工作流中使用。

import json
from langchain_core.messages import ToolMessage, SystemMessage
from langchain_core.runnables import RunnableConfigtools_by_name = {tool.name: tool for tool in tools}def tool_node(state: AgentState):outputs = []for tool_call in state["messages"][-1].tool_calls:tool_result = tools_by_name[tool_call["name"]].invoke(tool_call["args"])outputs.append(ToolMessage(content=json.dumps(tool_result),name=tool_call["name"],tool_call_id=tool_call["id"],))return {"messages": outputs}def call_model(state: AgentState,config: RunnableConfig,
):system_prompt = SystemMessage("You are a helpful AI assistant, please respond to the users query to the best of your ability!")response = model.invoke([system_prompt] + state["messages"], config)return {"messages": [response]}def should_continue(state: AgentState):messages = state["messages"]last_message = messages[-1]# If there is no function call, then we finishif not last_message.tool_calls:return "end"# Otherwise if there is, we continueelse:return "continue"

4. 构建工作流

使用 StateGraph 构建工作流,定义节点和边。

from langgraph.graph import StateGraph, ENDworkflow = StateGraph(AgentState)workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)workflow.set_entry_point("agent")workflow.add_conditional_edges("agent",should_continue,{"continue": "tools","end": END,},
)workflow.add_edge("tools", "agent")graph = workflow.compile()from IPython.display import Image, displaytry:display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:pass

在这里插入图片描述

5. 运行工作流

最后,我们定义一个辅助函数来格式化输出,并运行工作流。

# Helper function for formatting the stream nicely
def print_stream(stream):for s in stream:message = s["messages"][-1]if isinstance(message, tuple):print(message)else:message.pretty_print()inputs = {"messages": [("user", "what is the weather in sf")]}
print_stream(graph.stream(inputs, stream_mode="values"))

输出结果如下:

================================[1m Human Message [0m=================================
what is the weather in sf
================================[1m Ai Message [0m==================================
Tool Calls:get_weather (call_9208187575599553774)Call ID: call_9208187575599553774Args:location: San Francisco
================================[1m Tool Message [0m=================================
Name: get_weather"It's sunny in San Francisco, but you better look out if you're a Gemini 😈."
================================[1m Ai Message [0m==================================It's sunny in San Francisco, but you better look out if you're a Gemini 😈.

参考链接:https://langchain-ai.github.io/langgraph/how-tos/react-agent-from-scratch/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/473826.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网络】什么是交换机?switch

交换机(Switch)意为“开关”,是一种用于电(光)信号转发的网络设备。以下是关于交换机的详细解释: 一、交换机的基本定义 功能:交换机能为接入交换机的任意两个网络节点提供独享的电信号通路&am…

【AlphaFold3】开源本地的安装及使用

文章目录 安装安装DockerInstalling Docker on Host启用Rootless Docker 安装 GPU 支持安装 NVIDIA 驱动程序安装 NVIDIA 对 Docker 的支持 获取 AlphaFold 3 源代码获取基因数据库获取模型参数构建将运行 AlphaFold 3 的 Docker 容器 参考 AlphaFold3: https://github.com/goo…

【免越狱】iOS砸壳 可下载AppStore任意版本 旧版本IPA下载

软件介绍 下载iOS旧版应用,简化繁琐的抓包流程。 一键生成去更新IPA(手机安装后,去除App Store的更新检测)。 软件界面 支持系统 Windows 10/Windows 8/Windows 7(由于使用了Fiddler库,因此需要.Net环境…

shell 100例

1、每天写一个文件 (题目要求) 请按照这样的日期格式(xxxx-xx-xx每日生成一个文件 例如生成的文件为2017-12-20.log,并且把磁盘的使用情况写到到这个文件中不用考虑cron,仅仅写脚本即可 [核心要点] date命令用法 df命令 知识补充&#xff1…

Acrobat Pro DC 2023(pdf免费转化word)

所在位置 通过网盘分享的文件:Acrobat Pro DC 2023(64bit).tar 链接: https://pan.baidu.com/s/1_m8TT1rHTtp5YnU8F0QGXQ 提取码: 1234 --来自百度网盘超级会员v4的分享 安装流程 打开安装所在位置 进入安装程序 找到安装程序 进入后点击自定义安装,这里…

linux之调度管理(5)-实时调度器

一、概述 在Linux内核中,实时进程总是比普通进程的优先级要高,实时进程的调度是由Real Time Scheduler(RT调度器)来管理,而普通进程由CFS调度器来管理。 实时进程支持的调度策略为:SCHED_FIFO和SCHED_RR。 SCHED_FIFO&#xff…

在arm64架构下, Ubuntu 18.04.5 LTS 用命令安装和卸载qt4、qt5

问题:需要在 arm64下安装Qt,QT源码编译失败以后,选择在线安装! 最后安装的版本是Qt5.9.5 和QtCreator 4.5.2 。 一、ubuntu安装qt4的命令(亲测有效): sudo add-apt-repository ppa:rock-core/qt4 sudo apt updat…

Qt 之 qwt和QCustomplot对比

QWT(Qt Widgets for Technical Applications)和 QCustomPlot 都是用于在 Qt 应用程序中绘制图形和图表的第三方库。它们各有优缺点,适用于不同的场景。 以下是 QWT 和 QCustomPlot 的对比分析: 1. 功能丰富度 QWT 功能丰富&a…

实用教程:如何无损修改MP4视频时长

如何在UltraEdit中搜索MP4文件中的“mvhd”关键字 引言 在视频编辑和分析领域,有时我们需要深入到视频文件的底层结构中去。UltraEdit(UE)和UEStudio作为强大的文本编辑器,允许我们以十六进制模式打开和搜索MP4文件。本文将指导…

使用nossl模式连接MySQL数据库详解

使用nossl模式连接MySQL数据库详解 摘要一、引言二、nossl模式概述2.1 SSL与nossl模式的区别2.2 选择nossl模式的场景三、在nossl模式下连接MySQL数据库3.1 准备工作3.2 C++代码示例3.3 代码详解3.3.1 初始化MySQL连接对象3.3.2 连接到MySQL数据库3.3.3 执行查询操作3.3.4 处理…

Linux下编译MFEM

本文记录在Linux下编译MFEM的过程。 零、环境 操作系统Ubuntu 22.04.4 LTSVS Code1.92.1Git2.34.1GCC11.4.0CMake3.22.1Boost1.74.0oneAPI2024.2.1 一、安装依赖 二、编译代码 附录I: CMakeUserPresets.json {"version": 4,"configurePresets": [{&quo…

号卡分销系统,号卡系统,物联网卡系统源码安装教程

号卡分销系统,号卡系统,物联网卡系统,,实现的高性能(PHP协程、PHP微服务)、高灵活性、前后端分离(后台),PHP 持久化框架,助力管理系统敏捷开发,长期持续更新中。 主要特性 基于Auth验证的权限…

Java基础-集合

(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 前言 一、Java集合框架概述 二、Collection接口及其实现 2.1 Collection接口 2.2 List接口及其实现 …

基于Python的仓库管理系统设计与实现

背景: 基于Python的仓库管理系统功能介绍 本仓库管理系统采用Python语言开发,利用Django框架和MySQL数据库,实现了高效、便捷的仓库管理功能。 用户管理: 支持员工和管理员角色的管理。 用户注册、登录和权限分配功能&#x…

机器学习(基础2)

特征工程 特征工程:就是对特征进行相关的处理 一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程 特征工程是将任意数据(如文本或图像)转换为可用于机器学习的数字特征,比如:字典特征提取(特征离散化)、文本特征提取、图像特征提取。 特征工程API 实例化…

MATLAB向量元素的引用

我们定义一个向量后,如果想引用的话,可以通过索引 i n d ind ind来实现。 注意:MATLAB中向量的开始索引是1,与许多编程语言不同。 例如: 如果想引用多个的话,可以用索引 i n d ind ind来提取多个位置 例如…

微信小程序之路由跳转传数据及接收

跳转并传id或者对象 1.home/index.wxml <!--点击goto方法 将spu_id传过去--> <view class"item" bind:tap"goto" data-id"{{item.spu_id}}"> 结果: 2.home/index.js goto(event){// 路由跳转页面,并把id传传过去//获取商品idlet i…

贪心算法入门(三)

相关文章 贪心算法入门&#xff08;一&#xff09;-CSDN博客 贪心算法入门&#xff08;二&#xff09;-CSDN博客 1.什么是贪心算法&#xff1f; 贪心算法是一种解决问题的策略&#xff0c;它将复杂的问题分解为若干个步骤&#xff0c;并在每一步都选择当前最优的解决方案&am…

QT仿QQ聊天项目,第三节,实现聊天界面

一&#xff0c;界面控件示意图 界面主要由按钮QPushButton,标签QLabel,列表QListWidget 要注意的是QListWidget既是实现好友列表的控件&#xff0c;也是实现聊天气泡的控件 二&#xff0c;控件样式 QPushButton#btn_name {border:none;}QPushButton#btn_close {border:1px;bac…

Gin 框架入门(GO)-1

解决安装包失败问题(*) go env -w GO111MODULE=on go env -w GOPROXY=https://goproxy.cn,direct 1 介绍 Gin 是一个 Go (Golang) 编写的轻量级 http web 框架,运行速度非常快,Gin 最擅长的就是 Api 接口的高并发。 2 Gin 环境搭建 1.下载并安装 gin go get -u github.…