Spark:大数据处理的强大引擎

一、Spark 简介

Apache Spark 是一个专为大规模数据处理而设计的快速、通用、可扩展的大数据分析计算引擎。它诞生于 2009 年,由美国加州伯克利大学的 AMP 实验室开发,2013 年被纳入 Apache 开源项目,并迅速成为顶级项目。

Spark 被认为是 Hadoop 框架的升级版,主要原因在于其功能强大且独特。首先,它在性能方面表现优异。内存计算下,Spark 比 Hadoop 快 100 倍,在磁盘上也比 Hadoop 快 10 倍。例如,在处理大规模数据时,Spark 可以将中间结果存储在内存中,避免了 Hadoop 中频繁的磁盘读写操作,从而大大提高了计算速度。

其次,Spark 具有很高的易用性。它支持多种编程语言,包括 Java、Scala、Python 和 R。这使得不同背景的开发者都能轻松上手,利用 Spark 进行大数据分析。例如,Python 在人工智能和机器学习领域的广泛应用,使得开发者可以借助 Spark 轻松处理大规模数据,同时利用已封装好的算法库,降低开发门槛。

此外,Spark 的通用性也是其一大亮点。它提供了丰富的库,如 Spark Core、Spark SQL、Spark Streaming、MLlib 和 GraphX。开发者可以在同一个应用程序中无缝组合使用这些库,完成各种复杂的运算,包括 SQL 查询、文本处理、机器学习和图计算等。例如,在数据分析项目中,可以使用 Spark SQL 进行数据查询,利用 MLlib 进行机器学习算法训练,实现一站式的大数据处理解决方案。

总之,Spark 以其快速、通用、可扩展的特点,成为了大数据分析领域的重要工具,为大规模数据处理提供了强大的支持。

二、核心功能概述

在这里插入图片描述

(一)SparkContext

SparkContext 是 DriverApplication 执行与输出的关键。它隐藏了网络通信、分布式部署、消息通信、存储能力、计算能力、缓存、测量系统、文件服务、Web 服务等众多复杂功能。内置的 DAGScheduler 负责创建 Job,将有向无环图(DAG)中的弹性分布式数据集(RDD)划分到不同的 Stage,然后提交 Stage。例如,在一个复杂的数据处理流程中,DAGScheduler 会根据数据的依赖关系将任务划分为多个阶段,确保任务的高效执行。内置的 TaskScheduler 则负责资源的申请、任务的提交及请求集群对任务的调度等工作。它会根据集群的资源情况和任务的需求,合理地分配计算资源,提高任务的执行效率。

(二)存储体系

Spark 的存储体系在提升任务执行效率方面起着重要作用。Spark 优先考虑使用各节点的内存作为存储,当内存不足时才会考虑使用磁盘。这种方式极大地减少了磁盘 I/O,例如,在处理大规模数据时,如果数据能够全部存储在内存中,那么数据的读取和写入速度将大大提高。此外,Spark 还提供了以内存为中心的高容错的分布式文件系统 Tachyon 供用户进行选择。Tachyon 能够为 Spark 提供可靠的内存级的文件共享服务,进一步提高了数据的存储和访问效率。

(三)计算引擎

计算引擎是 Spark 的核心组成部分。它由 SparkContext 中的 DAGScheduler、RDD 以及具体节点上的 Executor 负责执行的 Map 和 Reduce 任务组成。在任务正式提交与执行之前,DAGScheduler 和 RDD 会将 Job 中的 RDD 组织成有向无关图(DAG),并对 Stage 进行划分。这决定了任务执行阶段任务的数量、迭代计算、shuffle 等过程。例如,在进行机器学习算法训练时,计算引擎会根据数据的依赖关系和算法的需求,自动划分任务阶段,合理分配计算资源,提高训练效率。

(四)部署模式

Spark 在 TaskScheduler 组件中提供了对多种部署模式的支持。Standalone 模式构建一个基于 Master/Slave 的资源调度集群,Spark 任务提交给 Master 运行。Yarn 模式下,Spark 客户端直接连接 Yarn,有 yarn-client 和 yarn-cluster 两种模式,主要区别在于 Driver 程序的运行节点不同,适用于不同的场景,如 yarn-client 适用于交互、调试,yarn-cluster 适用于生产环境。Mesos 模式中,Spark 客户端直接连接 Mesos,不需要额外构建 Spark 集群。此外,Spark 还提供了便于开发和调试的 Local 模式,包括 local(所有计算都运行在一个线程当中)、local [n](指定使用 n 个线程来运行计算)、local [*](按照 CPU 的最多核数来设置线程数)等设置方式。

三、扩展功能展示

在这里插入图片描述

(一)Spark SQL

Spark SQL 为 Spark 带来了强大的 SQL 处理能力。它不仅支持在 Spark 程序内使用 SQL 语句进行数据查询,还允许从外部工具如 Tableau 等通过标准数据库连接器(JDBC/ODBC)连接进行查询。例如,在企业数据分析场景中,数据分析师可以使用熟悉的商业智能软件连接 Spark SQL,轻松进行数据分析。

Spark SQL 可以从多种结构化数据源如 JSON、Hive、Parquet 等中读取数据。当处理数据时,它会将 SQL 语句转换为语法树,然后通过优化器生成高效的物理执行计划。这种方式使得查询更加高效,能够快速处理大规模数据。例如,从一个大型的 Hive 表中查询特定条件的数据,Spark SQL 能够快速分析并返回结果。

(二)Spark Streaming

Spark Streaming 主要用于流式计算。它支持多种数据输入源,如 Kafka、Flume、Twitter、ZeroMQ 和简单的 TCP 套接字等。Dstream 是 Spark Streaming 中所有数据流的抽象,本质上由一系列连续的 RDD 组成。

在内部实现上,Dstream 可以将流式计算分解成一系列短小的批处理作业,每一段数据都转换成 Spark 中的 RDD,然后进行各种操作。例如,在实时监控系统中,从网络数据源接收数据后,通过 Spark Streaming 进行实时分析,及时发现异常情况。

Spark Streaming 具有高吞吐量和容错能力强等特点。它可以和 Spark 的其他组件如 MLlib、GraphX 完美融合,为实时数据分析提供更多的可能性。

(三)GraphX

GraphX 是一个分布式图计算框架。它遵循 Pregel 模型实现,提供对图的抽象,即弹性分布式属性图,这是一个有向多重图,带有连接到每个顶点和边的用户定义的对象。

GraphX 封装了多种算法实现,如最短路径算法、图遍历算法、连通性分析、PageRank、社区检测等。例如,在社交网络分析中,可以使用 GraphX 快速计算用户之间的关系,发现社交网络中的关键节点和社区。

GraphX 统一了 Graph View 和 Table View,可以非常轻松地进行 pipeline 操作,为图计算提供了强大的工具。

(四)MLlib

MLlib 为 Spark 提供了一个强大的机器学习框架。它涵盖了多种数学算法,如分类算法(包括逻辑回归、决策树、随机森林等)、回归算法(线性回归、决策树回归等)、聚类算法(K-means 聚类、Gaussian Mixture Model 等)、推荐算法(交替最小二乘法)和频繁模式挖掘算法等。

MLlib 的出现降低了用户学习成本,用户无需深入了解复杂的机器学习算法实现细节,就可以利用这些算法进行大规模数据的机器学习任务。例如,在电商推荐系统中,可以使用 MLlib 的推荐算法为用户推荐感兴趣的商品。

四、总结与展望

Apache Spark 以其强大的核心功能和丰富的扩展功能,在大数据处理领域展现出了巨大的优势。SparkContext 作为应用程序执行与输出的关键,隐藏了众多复杂功能,其内置的 DAGScheduler 和 TaskScheduler 高效地管理着任务的创建、划分和调度。存储体系优先使用内存存储,极大地减少了磁盘 I/O,提高了任务执行效率,同时 Tachyon 为 Spark 提供了可靠的内存级文件共享服务。计算引擎由 DAGScheduler、RDD 和 Executor 组成,能够自动划分任务阶段,合理分配计算资源。部署模式的多样性使得 Spark 能够适应不同的应用场景。

扩展功能方面,Spark SQL 为用户提供了强大的 SQL 处理能力,支持多种数据源和外部工具连接,使得数据分析更加便捷高效。Spark Streaming 适用于流式计算,支持多种数据输入源,能够将流式计算分解为批处理作业,具有高吞吐量和容错能力强的特点。GraphX 作为分布式图计算框架,封装了多种算法实现,为图计算提供了强大的工具。MLlib 则为 Spark 提供了丰富的机器学习算法,降低了用户学习成本,使得大规模数据的机器学习任务变得更加容易。

然而,Spark 也面临着一些挑战。例如,在处理大规模数据时,内存的使用可能会受到限制,需要更好地管理内存资源。同时,与其他大数据处理框架的集成也需要进一步优化,以提高系统的整体性能。

展望未来,Spark 的发展潜力巨大。随着大数据技术的不断发展,对数据处理的速度和效率要求将越来越高。Spark 将继续改进其性能和可扩展性,以处理更大规模的数据和更复杂的计算任务。更多的应用场景将被开发出来,如机器学习、图计算等领域的应用将更加广泛。同时,Spark 的生态系统将不断壮大,更多的组件将加入其中,为用户提供更加全面的大数据处理解决方案。此外,Spark 还将进一步提高与其他大数据技术的集成性,为用户提供更加便捷的使用体验。

总之,Apache Spark 凭借其强大的功能和广阔的发展前景,将在大数据处理领域继续发挥重要作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/474297.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙HarmonyOS 地图定位到当前位置 site查询等操作

应用服务Map使用 地图定位 地点查询及导航 周边查询 点位标记定义等 地图定位 前提地图已经能正常显示,若不能显示请大家参考之前的那篇如何显示地图的博文 地图相关的api 位置效果图: module.json5配置权限 "requestPermissions": [{&…

编程语言02:语法基础

一、注释 (一)单行注释 java://,快捷键 Ctrl/ package Summarize;public class L01_01 {public static void main(String[] args) {// 单行注释,快捷键Ctrl/} }python:#,快捷键Ctrl/ # python单行注释 (二)多行注释 java /*java多行注释…

ubuntu24.04网卡配置

vim /etc/netplan/01-netcfg.yaml /24表示子网掩码的长度。这种表示法称为CIDR(无类别域间路由)记法。CIDR记法将IP地址和它们的子网掩码合并为一个单一的值,其中斜杠/后面的数字表示子网掩码中连续的1的位数。 对于/24: 24表示…

基于普中51单片机开发板的电子门铃设计( proteus仿真+程序+设计报告+讲解视频)

基于普中51单片机开发板的电子门铃设计( proteus仿真程序设计报告讲解视频) 仿真图proteus8.15(有低版本) 程序编译器:keil 4/keil 5 编程语言:C语言 设计编号:P17 1. 主要功能: 基于51单片机的电子门铃设计 1、…

HTML and CSS Support HTML 和 CSS 支持

GoTo DevExpress Data Grid 数据网格 HTML and CSS Support HTML 和 CSS 支持 HTML和CSS支持允许您创建完全自定义的UI元素,并消除使用基于属性的UI自定义和CustomDraw事件。您可以构建 HTML 格式的 UI,并使用 CSS 样式自定义 UI 元素的外观设置、大小、…

掌握Golang中的数据竞争检测:runtime/race包全面教程

掌握Golang中的数据竞争检测:runtime/race包全面教程 引言数据竞争问题概述数据竞争的定义数据竞争对程序的影响常见数据竞争场景 Golang runtime/race包概述runtime/race包简介启用数据竞争检测使用 go run使用 go build使用 go test 基本用法与示例单元测试中的使…

Ascend C算子性能优化实用技巧05——API使用优化

Ascend C是CANN针对算子开发场景推出的编程语言,原生支持C和C标准规范,兼具开发效率和运行性能。使用Ascend C,开发者可以基于昇腾AI硬件,高效的实现自定义的创新算法。 目前已经有越来越多的开发者使用Ascend C,我们…

【HCIP]——OSPF综合实验

题目 实验需求 根据上图可得,实验需求为: 1.R5作为ISP:其上只能配置IP地址;R4作为企业边界路由器,出口公网地址需要通过PPP协议获取,并进行CHAP认证。(PS:因PPP协议尚未学习&#…

深入理解Redis(七)----Redis实现分布式锁

基于Redis的实现方式 1、选用Redis实现分布式锁原因: (1)Redis有很高的性能; (2)Redis命令对此支持较好,实现起来比较方便 2、使用命令介绍: (1)SETNX SETNX …

Python-简单病毒程序合集(一)

前言:简单又有趣的Python恶搞代码,往往能给我们枯燥无味的生活带来一点乐趣,激发我们对编程的最原始的热爱。那么话不多说,我们直接开始今天的编程之路。 编程思路:本次我们将会用到os,paltform,threading,ctypes,sys,…

Web3浪潮下的区块链应用:从理论到实践的全面解析

随着Web3的兴起,区块链技术作为其核心支撑,正迎来前所未有的应用爆发。Web3不仅仅是技术的革新,更代表了一种去中心化、开放、透明的互联网愿景。在这一背景下,区块链技术的应用正从理论走向实践,推动着各行各业的数字…

网络安全:我们的安全防线

在数字化时代,网络安全已成为国家安全、经济发展和社会稳定的重要组成部分。网络安全不仅仅是技术问题,更是一个涉及政治、经济、文化、社会等多个层面的综合性问题。从宏观到微观,网络安全的重要性不言而喻。 宏观层面:国家安全与…

鸿蒙北向开发环境安装指南

境界一:昨夜西风凋碧树。独上高楼,望尽天涯路。----------王静安《人间词话》 单元一:鸿蒙开发工具的安装 学习目标 (1)完成鸿蒙开发工具Deveco Studio的安装。 任务1.1 下载DevEcoStudio 任务描述 DevEco Studi…

51单片机基础01 单片机最小系统

目录 一、什么是51单片机 二、51单片机的引脚介绍 1、VCC GND 2、XTAL1 2 3、RST 4、EA 5、PSEN 6、ALE 7、RXD、TXD 8、INT0、INT1 9、T0、T1 10、MOSI、MISO、SCK 11、WR、RD 12、通用IO P0 13、通用IO P1 14、通用IO P2 三、51单片机的最小系统 1、供电与…

golang开源框架:go开源验证框架validator

validator 单个字段格式验证 先来一个单个字段格式的验证 目录结构 在main函数中 package mainimport "awesomeProject/validate"func main() {validate.SingleFieldValidate() }在validator.go中 package validateimport ("github.com/go-playground/val…

计算机网络-MSTP基础实验一(单域多实例)

前面我们已经大致了解了MSTP的基本概念和工作原理,但是我自己也觉得MSTP的理论很复杂不结合实验是很难搞懂的,今天来做一个配套的小实验以及一些配置命令。 一、网络拓扑 单域多实例拓扑 基本需求:SW1为VLAN10的网关,SW2为VLAN20的…

智谱AI清影升级:引领AI视频进入音效新时代

前几天智谱推出了新清影,该版本支持4k、60帧超高清画质、任意尺寸,并且自带音效的10秒视频,让ai生视频告别了"哑巴时代"。 智谱AI视频腾空出世,可灵遭遇强劲挑战!究竟谁是行业翘楚?(附测评案例)之前智谱出世那时体验了一…

商业物联网详细指南:优势与挑战

物联网是信息技术行业最具前景的领域之一。为什么它如此热门呢?原因在于全球连接性。设备可以像人群一样相互协作。正如我们所知,协作能显著提高生产力。 物联网对普通用户和企业都有益处。许多日常流程可以通过传感器、扫描仪、摄像头和其他设备实现自…

css uniapp背景图宽度固定高度自适应可以重复

page {height: 100%;background-image: url(https://onlinekc.a.hlidc.cn/uploads/20241115/350f94aaf493d05625a7ddbc86c7804e.png);background-repeat: repeat;background-size: contain;} 如果不要重复 把background-repeat: repeat;替换background-repeat: no-repeat;

学习日志012--python中多进程,多线程

简简单单小练习 1.线程的并发执行 import threading import time# 创建要执行的两个函数 def print_hello():for _ in range(10):print("hello")time.sleep(1)def print_world():for _ in range(10):print("world")time.sleep(1)# 创建线程对象 注意这里…