【算法】连通块问题(C/C++)

目录

连通块问题

解决思路

步骤:

初始化:

DFS函数:

复杂度分析

 代码实现(C++)

题目链接:2060. 奶牛选美 - AcWing题库

解题思路:

AC代码: 

题目链接:687. 扫雷 - AcWing题库 

解题思路:

AC代码:

总结:


连通块问题

连通块问题(Connected Component Problem)是一个经典的图论问题,通常用来找出图中的所有连通分量。给定一个无向图,连通块问题的目标是确定图中有多少个连通分量(即有多少个互相连通的节点组成的集合)

解决思路

  1. 深度优先搜索(DFS)广度优先搜索(BFS)
    • 可以从任意未访问的节点出发,进行DFS或BFS,标记所有能够访问到的节点,代表这个连通分量。
    • 重复这个过程,直到所有节点都被访问为止。每次从新的未访问节点出发时,就代表发现了一个新的连通分量。
  2. 并查集(Union-Find)
    • 并查集是一种有效的解决连通性问题的数据结构。可以通过合并节点来动态地找到连通分量。

在这里,我将使用DFS的方式解决该问题,并以邻接表的形式来表示图。


步骤:

初始化:

创建一个访问数组visited[]来跟踪每个顶点是否被访问过。
初始化visited[]数组,将所有顶点标记为未访问。

DFS函数:

定义一个递归函数DFS(vertex),该函数从给定的顶点开始进行深度优先搜索。
在DFS函数中:
将当前顶点标记为已访问。
访问所有与当前顶点相邻的未访问的顶点,并递归调用DFS。
遍历所有顶点:

对于图中的每个未访问的顶点,调用DFS函数。
记录连通块:

每当DFS从一个新的未访问的顶点开始时,就表示找到了一个新的连通块。
输出结果:

可以打印出每个连通块中的顶点,或者计算连通块的数量。

复杂度分析

  • 时间复杂度O(n + m),其中 n 是节点数,m 是边数。每个节点和每条边都被遍历一次。
  • 空间复杂度O(n + m),用于存储图的邻接表和访问数组。

这种解决方案适用于中小规模的图,如果图的节点数非常大,可以考虑并查集来优化连通性问题。


 代码实现(C++)

#include <iostream>
#include <vector>
using namespace std;const int MAX_N = 1000;  // 假设最多1000个节点
vector<int> graph[MAX_N];  // 邻接表表示图
bool visited[MAX_N];       // 访问标记数组// 深度优先搜索(DFS)
void dfs(int node) {visited[node] = true;  // 标记当前节点已访问for (int neighbor : graph[node]) {  // 遍历所有邻居节点if (!visited[neighbor]) {dfs(neighbor);  // 如果邻居节点未访问,继续DFS}}
}int main() {int n, m;  // n为节点数,m为边数cin >> n >> m;// 读取图的边for (int i = 0; i < m; i++) {int u, v;cin >> u >> v;graph[u].push_back(v);graph[v].push_back(u);  // 无向图,双向连接}int connected_components = 0;  // 记录连通块数目// 遍历所有节点for (int i = 1; i <= n; i++) {if (!visited[i]) {  // 如果节点i未被访问,说明发现了一个新的连通块dfs(i);  // 对该节点进行DFSconnected_components++;  // 连通块数加1}}cout << connected_components << endl;return 0;
}

题目链接:2060. 奶牛选美 - AcWing题库

听说最近两斑点的奶牛最受欢迎,约翰立即购进了一批两斑点牛。

不幸的是,时尚潮流往往变化很快,当前最受欢迎的牛变成了一斑点牛。

约翰希望通过给每头奶牛涂色,使得它们身上的两个斑点能够合为一个斑点,让它们能够更加时尚。

牛皮可用一个 N×M 的字符矩阵来表示,如下所示:

................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....

其中,X 表示斑点部分。

如果两个 X 在垂直或水平方向上相邻(对角相邻不算在内),则它们属于同一个斑点,由此看出上图中恰好有两个斑点。

约翰牛群里所有的牛都有两个斑点

约翰希望通过使用油漆给奶牛尽可能少的区域内涂色,将两个斑点合为一个。

在上面的例子中,他只需要给三个 .. 区域内涂色即可(新涂色区域用 ∗∗ 表示):

................
..XXXX....XXX...
...XXXX*...XX...
.XXXX..**..XXX..
........XXXXX...
.........XXX....

请帮助约翰确定,为了使两个斑点合为一个,他需要涂色区域的最少数量。

输入格式

第一行包含两个整数 N 和 M。

接下来 N 行,每行包含一个长度为 M 的由 X 和 .. 构成的字符串,用来表示描述牛皮图案的字符矩阵。

输出格式

输出需要涂色区域的最少数量。

数据范围

1≤N,M≤50

输入样例:

6 16
................
..XXXX....XXX...
...XXXX....XX...
.XXXX......XXX..
........XXXXX...
.........XXX....

输出样例:

3

解题思路:

此题主要是运用dfs或者bfs去找连通块最小距离。搜索思想,先去找X的点,只要找到了一个X点,那么此点所在的连通块就一网打尽了,把此连通块的点存起来,再搜第二个连通块,把第二个连通块的点也都存起来,然后外循环第一个连通块的点,内循环第二个连通块的点,每次尝试两个点染色,就是图中第一个连通块黄色格子跟第二个连通块黄色格子求距离。在所有里面找一个min的值即可,途中红色的为最小。最后输出减一就是答案,因为这里求的是两点之间点的距离。


AC代码: 

#include<iostream>
#include<cstring>
#include<cmath>
#include<vector>
#include<climits>
using namespace std;
typedef pair<int, int> PII;
const int N = 55;
char s[N][N];//存图
vector<PII> points[2];//连通块
int dx[]={0,0,1,-1};//方向数组
int dy[]={1,-1,0,0};
int n,m;
int res=INT_MAX;//无穷大
void dfs(int a,int b,vector<PII>&p){s[a][b]='.';//走过此连通块的就置为'.'防止重复搜索p.push_back({a,b});//连通块所有的坐标for(int i=0;i<4;i++){int x=a+dx[i];int y=b+dy[i];if(x>=0&&y>=0&&x<n&&y<m&&s[x][y]=='X'){//符合条件就继续搜dfs(x,y,p);}}
}
int main()
{cin>>n>>m;for(int i=0;i<n;i++){cin>>s[i];}int k=0;for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(s[i][j]=='X'){//找到一个X就能找到此联通块dfs(i,j,points[k++]);}}}for(auto i:points[0]){//c++11遍历更简单for(auto j:points[1]){res=min(res,abs(i.first-j.first)+abs(i.second-j.second));//两个坐标差值}}//最后要减一,比如(1,1)与(1,3)之间只有一个(1,2),做差为2,所以要减一cout<<res-1<<endl;return 0;
}

题目链接:687. 扫雷 - AcWing题库 

扫雷是一种计算机游戏,在 2020 世纪 8080 年代开始流行,并且仍然包含在某些版本的 Microsoft Windows 操作系统中。

在这个问题中,你正在一个矩形网格上玩扫雷游戏。

最初网格内的所有单元格都呈未打开状态。

其中 M 个不同的单元格中隐藏着 M 个地雷。

其他单元格内不包含地雷。

你可以单击任何单元格将其打开。

如果你点击到的单元格中包含一个地雷,那么游戏就会判定失败。

如果你点击到的单元格内不含地雷,则单元格内将显示一个 0 到 8 之间的数字(包括 0 和 8),这对应于该单元格的所有相邻单元格中包含地雷的单元格的数量。

如果两个单元格共享一个角或边,则它们是相邻单元格。

另外,如果某个单元格被打开时显示数字 0,那么它的所有相邻单元格也会以递归方式自动打开。

当所有不含地雷的单元格都被打开时,游戏就会判定胜利。

例如,网格的初始状态可能如下所示(* 表示地雷,而 c 表示第一个点击的单元格):

*..*...**.
....*.....
..c..*....
........*.
..........

被点击的单元格旁边没有地雷,因此当它被打开时显示数字 0,并且它的 8 个相邻单元也被自动打开,此过程不断继续,最终状态如下:

*..*...**.
1112*.....
00012*....
00001111*.
00000001..

此时,仍有不包含地雷的单元格(用 . 字符表示)未被打开,因此玩家必须继续点击未打开的单元格,使游戏继续进行。

你想尽快赢得游戏胜利并希望找到赢得游戏的最低点击次数。

给定网格的尺寸(N×N),输出能够获胜的最小点击次数。

输入格式

第一行包含整数 T,表示共有 T 组测试数据。

每组数据第一行包含整数 N,表示游戏网格的尺寸大小。

接下来 N 行,每行包含一个长度为 N 的字符串,字符串由 .(无雷)和 *(有雷)构成,表示游戏网格的初始状态。

输出格式

每组数据输出一个结果,每个结果占一行。

结果表示为 Case #x: y,其中 x 是组别编号(从 1 开始),y 是获胜所需的最小点击次数。

数据范围

1≤T≤100
1≤N≤300

输入样例:

2
3
..*
..*
**.
5
..*..
..*..
.*..*
.*...
.*...

输出样例:

Case #1: 2
Case #2: 8

解题思路:

此题是DFS求连通块,扫雷中分三种情况,如果你点一次,此点附近没有雷,那么这一个0连通块就会全部显示出来,此0连通块边界就会显示此点附近雷的个数。第二种就是不在0连通块,附近有雷的点,为了要赢,这个也必须要点。第三种就是在连通块里面,附近有雷的点,这个点对于此题来说,先点了第一种,那么第三种的点也被包含在里面了,省了一步,此题要求最少点多少次,那么答案就是0连通块的数量+不在0连通块,附近有雷的点(1--8)。此题可用DFS、BFS进行找0联通块。

视频讲解:AcWing 687. 扫雷(每日一题)_哔哩哔哩_bilibili

AC代码:

#include<iostream>
using namespace std;
const int N=305;
int n,T;
char str[N][N];
int a[N][N];//标记(i,j)点附近有几个雷
void dfs(int x,int y){int t=a[x][y];a[x][y]=-1;if(t){return;}for(int i=x-1;i<=x+1;i++){for(int j=y-1;j<=y+1;j++){if(i>=0&&j>=0&&i<n&&j<n&&a[i][j]!=-1){dfs(i,j);}}}
}
int main(){cin>>T;for(int k=1;k<=T;k++){cin>>n;for(int j=0;j<n;j++){cin>>str[j];}int res=0;for(int i=0;i<n;i++){for(int j=0;j<n;j++){if(str[i][j]=='*'){//如果此点是雷标记为-1a[i][j]=-1;}else{a[i][j]=0;for(int l=i-1;l<=i+1;l++){for(int r=j-1;r<=j+1;r++){if(str[l][r]=='*'&&l>=0&&r>=0&&l<n&&r<n){//附近是雷且没有越界a[i][j]++;}}}}}}for(int i=0;i<n;i++){//求为0的连通块for(int j=0;j<n;j++){if(a[i][j]==0){res++;dfs(i,j);}}}for(int i=0;i<n;i++){//求不属于0连通块且不是雷的点for(int j=0;j<n;j++){if(a[i][j]!=-1){res++;}}}cout<<"Case #"<<k<<":"<<res<<endl;}return 0;
}

总结:

此题思路难想,当思路打开了,按照板子就可以写出来,需要多练习问题转化能力,如此题转化为连通块最小距离。用dfs或者bfs进行图的遍历,寻找有用的信息。文章若有错误、不足的地方恳请大家指出,一起加油。

执笔至此,感触彼多,全文降至、落笔为终,感谢大家的支持。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/478835.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

24.11.26 Mybatis2

resultMap 中的标签和属性 如果是主键列 一般用id标签对应 propertyjava对象的属性 column 数据库中的列( javaType实体类数据类型 jdbcType数据库列的数据类型 ) 不需要配置 <id property"empno" column"empno" />如果是普通列 一般用result对…

Redis设计与实现第14章 -- 服务器 总结(命令执行器 serverCron函数 初始化)

14.1 命令请求的执行过程 一个命令请求从发送到获得回复的过程中&#xff0c;客户端和服务器都需要完成一系列操作。 14.1.1 发送命令请求 当用户在客户端中输入一个命令请求的时候&#xff0c;客户端会把这个命令请求转换为协议格式&#xff0c;然后通过连接到服务器的套接字…

ArcGIS pro中的回归分析浅析(加更)关于广义线性回归工具的补充内容

在回归分析浅析中篇的文章中&#xff0c; 有人问了一个问题&#xff1a; 案例里的calls数据貌似离散&#xff0c;更符合泊松模型&#xff0c;为啥不采用泊松而采用高斯呢&#xff1f; 确实&#xff0c;在中篇中写道&#xff1a; 在这个例子中我们为了更好地解释变量&#x…

【面试题】2025年百度校招Java后端面试题

文章目录 前言一、网络IO1、服务器处理并发请求有哪几种方式&#xff1f;2、说一下select&#xff0c;poll&#xff0c;epoll的区别&#xff1f;3、Java 有一种现代的处理方式&#xff0c;属于异步I/O&#xff0c;是什么&#xff1f;redis&#xff0c;nginx&#xff0c;netty 是…

【Zookeeper 和 Kafka】为什么 Zookeeper 不用域名?

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…

RiceChem——用于评估大语言模型在教育领域自动长答卷评分 (ALAG) 的数据集

摘要 论文地址:https://arxiv.org/abs/2404.14316 源码地址&#xff1a;https://github.com/luffycodes/automated-long-answer-grading 迄今为止&#xff0c;教育领域的自然语言处理&#xff08;NLP&#xff09;主要集中在简答题评分和自由文本作文评分方面。然而&#xff0c…

Java ArrayList 与顺序表:在编程海洋中把握数据结构的关键之锚

我的个人主页 我的专栏&#xff1a;Java-数据结构&#xff0c;希望能帮助到大家&#xff01;&#xff01;&#xff01;点赞❤ 收藏❤ 前言&#xff1a;在 Java编程的广袤世界里&#xff0c;数据结构犹如精巧的建筑蓝图&#xff0c;决定着程序在数据处理与存储时的效率、灵活性以…

【04】Selenium+Python 手动添加Cookie免登录(实例)

一、什么是Cookie&#xff1f; Cookie 是一种由服务器创建并保存在用户浏览器中的小型数据文件。它用于存储用户的相关信息&#xff0c;以便在后续访问同一网站时可以快速检索这些信息。Cookie 主要用于以下几个方面&#xff1a; 1.状态管理&#xff1a; Cookie 可以保存用户…

GitLab|应用部署

创建docker-compose.yaml文件 输入docker-compose配置 version: 3.8 services:gitlab:image: gitlab/gitlab-ce:15.11.2-ce.0restart: alwayscontainer_name: gitlab-ceprivileged: truehostname: 192.168.44.235environment:TZ: Asia/ShanghaiGITLAB_OMNIBUS_CONFIG: |exter…

【PX4_Autopolite飞控源码】中飞控板初始化过程中的引脚IO控制(拉低/拉高)

先选择自己飞控板支持的硬件平台 打开对应的路径我的是Desktop/px4/PX4-Autopilot/boards/zhty/nora 找到board_config.h文件&#xff0c;打开nora后再往下去找Desktop/px4/PX4-Autopilot/boards/zhty/nora/src/borad_config.h 打开后可以看到有很多GPIO引脚的定义&#xff0c…

如何使用Postman优雅地进行接口自动加密与解密

引言 在上一篇文章中&#xff0c;分享了 Requests 自动加解密的方法&#xff0c;本篇文章分享一下更加方便的调试某个服务端接口。 Postman Postman 这个工具后端小伙伴应该相当熟悉了&#xff0c;一般情况下我们会在开发和逆向过程中使用它来快速向接口发送请求&#xff0c;…

Spring Boot——统一功能处理

1. 拦截器 拦截器主要用来拦截用户的请求&#xff0c;在指定方法前后&#xff0c;根据业务需要执行设定好的代码&#xff0c;也就是提前定义一些逻辑&#xff0c;在用户的请求响应前后执行&#xff0c;也可以在用户请求前阻止其执行&#xff0c;例如登录操作&#xff0c;只有登…

PYTORCH基础语法知识

初识Torch PyTorch&#xff0c;简称Torch&#xff0c;主流的经典的深度学习框架&#xff0c;深度学习的框架。 简介 PyTorch是一个基于Python的深度学习框架&#xff0c;它提供了一种灵活、高效、易于学习的方式来实现深度学习模型。PyTorch最初由Facebook开发&#xff0c;被…

C嘎嘎探索篇:栈与队列的交响:C++中的结构艺术

C嘎嘎探索篇&#xff1a;栈与队列的交响&#xff1a;C中的结构艺术 前言&#xff1a; 小编在之前刚完成了C中栈和队列&#xff08;stack和queue&#xff09;的讲解&#xff0c;忘记的小伙伴可以去我上一篇文章看一眼的&#xff0c;今天小编将会带领大家吹奏栈和队列的交响&am…

刷题日常(数据流中的中位数,逆波兰表达式求值,最长连续序列,字母异位词分组)

数据流中的中位数 描述 如何得到一个数据流中的中位数&#xff1f;如果从数据流中读出奇数个数值&#xff0c;那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值&#xff0c;那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()…

SQL 复杂查询

目录 复杂查询 一、目的和要求 二、实验内容 &#xff08;1&#xff09;查询出所有水果产品的类别及详情。 查询出编号为“00000001”的消费者用户的姓名及其所下订单。&#xff08;分别采用子查询和连接方式实现&#xff09; 查询出每个订单的消费者姓名及联系方式。 在…

uniapp-vue2引用了vue-inset-loader插件编译小程序报错

报错信息 Error: Vue packages version mismatch: - vue3.2.45 (D:\qjy-myApp\admin-app\node_modules\vue\index.js) - vue-template-compiler2.7.16 (D:\qjy-myApp\admin-app\node_modules\vue-template-compiler\package.json) This may cause things to work incorrectly.…

VOLO实战:使用VOLO实现图像分类任务(二)

文章目录 训练部分导入项目使用的库设置随机因子设置全局参数图像预处理与增强读取数据设置Loss设置模型设置优化器和学习率调整策略设置混合精度&#xff0c;DP多卡&#xff0c;EMA定义训练和验证函数训练函数验证函数调用训练和验证方法 运行以及结果查看测试完整的代码 在上…

【Linux】TCP网络编程

目录 V1_Echo_Server V2_Echo_Server多进程版本 V3_Echo_Server多线程版本 V3-1_多线程远程命令执行 V4_Echo_Server线程池版本 V1_Echo_Server TcpServer的上层调用如下&#xff0c;和UdpServer几乎一样&#xff1a; 而在InitServer中&#xff0c;大部分也和UDP那里一样&…

XG(S)-PON原理

前言 近年来&#xff0c;随着全球范围内接入市场的飞快发展以及全业务运营的快速开展&#xff0c;已有的PON技术标准在带宽需求、业务支撑能力以及接入节点设备和配套设备的性能提升等方面都面临新的升级需求XG(S)-PON(10G GPON)是在已有GPON技术标准上演进的增强下一代GPON技…