简单好用的折线图绘制!

折线图的概念及作用:

折线图(Line Chart)是一种常见的图表类型,用于展示数据的变化趋势或时间序列数据。它通过一系列的数据点(通常表示为坐标系中的点)与这些点之间的线段相连,直观地展示变量随着时间或其他因素变化的情况。折线图适用于比较多个数据集的变化趋势,尤其是在时间序列数据分析中,常用于反映数据的连续性和波动。

1. 折线图的基本概念

折线图是由坐标系中的一系列数据点和这些点之间的直线段组成。每个数据点的横坐标通常代表某一时间点或顺序,而纵坐标则表示对应的数值(如销量、温度、股票价格等)。通过连接这些点,形成折线图,可以清晰地看到数据的波动趋势和变化规律。

  • 横坐标(X轴):通常表示自变量,例如时间、日期、阶段等。它是连续的或离散的。
  • 纵坐标(Y轴):表示因变量,即需要观察的数据值。
  • 数据点:每一个数据点对应一个横坐标和纵坐标的组合,表示某个时刻或某个条件下的观测值。
  • 折线:通过连接数据点,形成的线条展示了数据的变化趋势。

2. 折线图的作用

折线图的作用主要体现在以下几个方面:

a. 展示数据变化的趋势

折线图最常见的用途是展示数据随时间或其他因素变化的趋势。通过观察折线的走势,可以直观地了解数据随时间的波动和变化模式。

  • 例如,绘制一年中每个月的气温变化折线图,可以清晰地看出气温的升降趋势,揭示季节性变化。
b. 比较多个数据系列

折线图还可以用来比较多个数据系列的变化趋势。当有多个变量或不同类别的时间序列数据时,可以将它们绘制在同一张图表上,通过不同的颜色、线型或符号区分不同的数据系列。

  • 例如,比较不同公司在同一时间段内的股票价格变化,或不同地区的气温变化。
c. 揭示数据的波动性和周期性

折线图不仅能展示数据的趋势,还能揭示数据中的周期性波动(如季节变化)、突发性变化、趋势反转等重要特征。

  • 例如,通过绘制股票市场的折线图,可以看到市场的波动性,识别牛市和熊市的周期性变化。
d. 识别异常值或趋势变化点

折线图能够帮助观察数据中的异常值或突变点。例如,突如其来的数据激增或暴跌在折线图中会形成尖锐的波动,容易被观察者识别出来。

  • 例如,销售额的急剧下降可能是某个重要事件导致的,需要进一步分析。

3. 折线图的类型

根据数据的特点和需求,折线图可以有不同的变种,常见的有:

a. 基本折线图(Simple Line Chart)

最基本的折线图,展示一个数据系列随时间的变化趋势。

b. 多重折线图(Multiple Line Chart)

适用于比较多个数据系列。每个系列通过不同的颜色或线型区分,以便在同一图表中显示多个变量的变化趋势。

c. 堆叠折线图(Stacked Line Chart)

在多重折线图的基础上,堆叠折线图显示了不同数据系列之间的叠加关系。每个数据系列的值在前一系列之上堆叠起来,适用于表示部分与整体的关系。

  • 例如,展示各个产品在某个月的销售额时,可以通过堆叠折线图看到不同产品的销售额与总销售额之间的关系。
d. 平滑折线图(Smooth Line Chart)

在基本折线图的基础上,通过平滑算法(如样条插值等)使得折线不那么尖锐,适用于数据变化较为平稳、且不要求每个数据点之间的波动都十分显著的情况。


代码:

第一部分:加载所需包

library(ggplot2)
library(dplyr)
library(tidyr)
library(gridExtra)
library(openxlsx)
  • ggplot2:用于数据可视化。
  • dplyr:用于数据操作。
  • tidyr:用于数据整理(例如宽表和长表的转换)。
  • gridExtra:用于排版多个图表。
  • openxlsx:用于读取和写入 Excel 文件。

第二部分:数据加载与清理

mydata <- read.xlsx("gpt.xlsx")
mydata <- subset(mydata, mydata$final != 3)
mydata <- mydata %>%mutate(gpt = factor(gpt, levels = c("gpt3.5", "gpt4")),system = factor(system, levels = c("system2", "system1")),query = factor(query, levels = c("query1", "query2")),final_new = factor(final, labels = c("不参加", "参加")),sort_new = factor(sort, labels = paste0(seq(10, 90, by = 10), "%")))
  1. 数据加载:

    • read.xlsx("gpt.xlsx"):读取 Excel 文件 gpt.xlsx
  2. 数据过滤:

    • subset(mydata, mydata$final != 3):去除 final 列中值为 3 的数据。
  3. 数据清理:

    • 使用 mutate 对数据进行格式化处理:
      • gptsystemquery 列转为因子变量,设定排序规则。
      • finalsort 列创建新的因子变量,并赋予更易读的标签。

第三部分:分组并汇总数据

result_wide <- mydata %>%group_by(gpt, system, query, final_new) %>%summarise(Frequency = n(), .groups = 'drop') %>%pivot_wider(names_from = final_new, values_from = Frequency, values_fill = list(Frequency = 0)) %>%mutate(Proportion = 参加 / (不参加 + 参加))
  1. 分组与汇总:

    • group_by(gpt, system, query, final_new):按 gptsystemqueryfinal_new 进行分组。
    • summarise(Frequency = n(), .groups = 'drop'):计算每组的频数,生成 Frequency 列。
  2. 宽表转换:

    • pivot_wider(names_from = final_new, values_from = Frequency, values_fill = list(Frequency = 0))
      • final_new 的值("不参加" 和 "参加")作为新列,值来源于 Frequency
      • 未匹配的单元格填充为 0
  3. 计算比例:

    • mutate(Proportion = 参加 / (不参加 + 参加)):计算 "参加" 在总频数中的比例,结果存储在 Proportion 列中。

第四部分:绘制折线图

plota <- ggplot(result_wide, aes(x = system, y = Proportion, color = gpt, linetype = query, group = interaction(gpt, query))) +geom_line(linewidth = 1.1) +geom_point(size = 2) +labs(title = "比对折线图", x = "system", y = "参加比例") +theme_minimal() +theme(plot.title = element_text(hjust = 0.5),legend.title = element_blank(),legend.position = "bottom") +scale_color_manual(values = c("gpt3.5" = "red", "gpt4" = "green")) +scale_linetype_manual(values = c("query1" = "solid", "query2" = "dashed", "query4" = "dotted"),labels = c("query1" = "query1-单次博弈", "query2" = "query2-多次博弈", "query4" = "query4-聚合结果的多次博弈")) +scale_x_discrete(labels = c("system1" = "system1【AI】", "system2" = "system2【Human】"))
核心部分解释:
  1. ggplot 初始化:

    • aes(x = system, y = Proportion, color = gpt, linetype = query, group = interaction(gpt, query))
      • xsystem 作为 x 轴变量。
      • yProportion 作为 y 轴变量(参加比例)。
      • colorgpt 区分颜色。
      • linetypequery 区分线型(例如虚线、实线等)。
      • group:按照 gptquery 的组合分组,确保线条连续。
  2. 绘制折线和点:

    • geom_line(linewidth = 1.1):绘制折线,设置线宽为 1.1。
    • geom_point(size = 2):在线上叠加点,设置点大小为 2。
  3. 添加标题和标签:

    • labs(title = "比对折线图", x = "system", y = "参加比例"):设置图表标题和轴标签。
  4. 主题样式:

    • theme_minimal():应用简约主题。
    • theme(...)
      • plot.title = element_text(hjust = 0.5):标题居中。
      • legend.title = element_blank():去除图例标题。
      • legend.position = "bottom":将图例放在底部。
  5. 自定义颜色和线型:

    • scale_color_manual(...):指定颜色:
      • "gpt3.5" 为红色,"gpt4" 为绿色。
    • scale_linetype_manual(...)
      • values:指定线型(实线、虚线、点线)。
      • labels:为每种 query 提供易读的标签描述。
  6. 自定义 x 轴标签:

    • scale_x_discrete(labels = c("system1" = "system1【AI】", "system2" = "system2【Human】"))
      • system1system2 的标签分别替换为 system1【AI】system2【Human】

第五部分:保存图表

ggsave("plota.png", plota, width = 8, height = 6, bg = "white")
  • 将绘制的图形 plota 保存为 PNG 文件:
    • 文件名为 plota.png
    • 宽度和高度分别为 8 英寸和 6 英寸。
    • 背景色为白色。

总结:

# ------- 加载所需包 -------
library(ggplot2)
library(dplyr)
library(tidyr)
library(gridExtra)
library(openxlsx)# ------- 加载并清理数据 -------
mydata <- read.xlsx("gpt.xlsx")
mydata <- subset(mydata, mydata$final != 3)
mydata <- mydata %>%mutate(gpt = factor(gpt, levels = c("gpt3.5", "gpt4")),system = factor(system, levels = c("system2", "system1")),query = factor(query, levels = c("query1", "query2")),final_new = factor(final, labels = c("不参加", "参加")),sort_new = factor(sort, labels = paste0(seq(10, 90, by = 10), "%")))# ------- 分组并汇总数据 -------
result_wide <- mydata %>%group_by(gpt, system, query, final_new) %>%summarise(Frequency = n(), .groups = 'drop') %>%pivot_wider(names_from = final_new, values_from = Frequency, values_fill = list(Frequency = 0)) %>%mutate(Proportion = 参加 / (不参加 + 参加))# 打印汇总数据
print(result_wide)# ------- 绘制折线图 -------
plota <- ggplot(result_wide, aes(x = system, y = Proportion, color = gpt, linetype = query, group = interaction(gpt, query))) +geom_line(linewidth = 1.1) +geom_point(size = 2) +labs(title = "比对折线图", x = "system", y = "参加比例") +theme_minimal() +theme(plot.title = element_text(hjust = 0.5),legend.title = element_blank(),legend.position = "bottom") +scale_color_manual(values = c("gpt3.5" = "red", "gpt4" = "green")) +scale_linetype_manual(values = c("query1" = "solid", "query2" = "dashed", "query4" = "dotted"),labels = c("query1" = "query1-单次博弈", "query2" = "query2-多次博弈", "query4" = "query4-聚合结果的多次博弈")) +scale_x_discrete(labels = c("system1" = "system1【AI】", "system2" = "system2【Human】"))# 显示图表
print(plota)# ------- 保存图表 -------
ggsave("plota.png", plota, width = 8, height = 6, bg = "white")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/480351.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【拥抱AI】Milvus 如何处理 TB 级别的大规模向量数据?

处理 TB 级别的大规模向量数据是 Milvus 的核心优势之一。Milvus 通过分布式架构、高效的索引算法和优化的数据管理策略来实现这一目标。下面将详细介绍 Milvus 如何处理 TB 级别向量数据的流程&#xff0c;包括插入代码示例、指令以及流程图。 1. 分布式架构 Milvus 使用分…

Scrapy管道设置和数据保存

1.1 介绍部分&#xff1a; 文字提到常用的Web框架有Django和Flask&#xff0c;接下来将学习一个全球范围内流行的爬虫框架Scrapy。 1.2 内容部分&#xff1a; Scrapy的概念、作用和工作流程 Scrapy的入门使用 Scrapy构造并发送请求 Scrapy模拟登陆 Scrapy管道的使用 Scrapy中…

k8s集群部署metrics-server

1、Metrics Server介绍 Metrics Server 是集群级别的资源利用率数据的聚合器。从 Kubelets收集资源指标&#xff0c;并通过 Metrics API 在 Kubernetes apiserver 中公开它们&#xff0c;以供 Horizontal Pod Autoscaler 和Vertical Pod Autoscaler 使用。 Metrics API 也可以…

什么是串联谐振

比如有一个由电阻、电容和电感的串联电路中&#xff0c;存在一个频率能使这个电路的电流最大&#xff0c;这个现象就叫谐振。 那么这个频率是多少呢&#xff1f; 交流电频率与电路固有频率一致时&#xff0c;它就能发生谐振&#xff0c;此时这个电路的电流是最大的 这个固有频…

(vue)启动项目报错The project seems to require pnpm but it‘s not installed

(vue)启动项目报错The project seems to require pnpm but it’s not installed 原因 该错误信息表明你的项目需要使用 pnpm 作为包管理工具&#xff0c;但系统中尚未安装 pnpm。 解决方法 【1】删除pnpm.lock 【2】npm install -g pnpm 之后再重新启动 yarn报错&#xff0…

Laravel8.5+微信小程序实现京东商城秒杀方案

一、商品秒杀涉及的知识点 鉴权策略封装掊口访问频次限制小程序设计页面防抖接口调用订单创建事务使用超卖防御 二、订单库存系统方案&#xff08;3种&#xff09; 下单减库存 优点是库存和订单的强一致性&#xff0c;商品不会卖超&#xff0c;但是可能导致恶意下单&#xff…

JVM:即时编译器,C2 Compiler,堆外内存排查

1&#xff0c;即时编译器 1.1&#xff0c;基本概念 常见的编译型语言如C&#xff0c;通常会把代码直接编译成CPU所能理解的机器码来运行。而Java为了实现“一次编译&#xff0c;处处运行”的特性&#xff0c;把编译的过程分成两部分&#xff0c;首先它会先由javac编译成通用的…

屏幕分辨率|尺寸|颜色深度指纹修改

一、前端通过window.screen接口获取屏幕分辨率 尺寸 颜色深度&#xff0c;横屏竖屏信息。 二、window.screen c接口实现&#xff1a; 1、third_party\blink\renderer\core\frame\screen.idl // https://drafts.csswg.org/cssom-view/#the-screen-interface[ExposedWindow ] …

【C#设计模式(15)——命令模式(Command Pattern)】

前言 命令模式的关键通过将请求封装成一个对象&#xff0c;使命令的发送者和接收者解耦。这种方式能更方便地添加新的命令&#xff0c;如执行命令的排队、延迟、撤销和重做等操作。 代码 #region 基础的命令模式 //命令&#xff08;抽象类&#xff09; public abstract class …

Linux基础项目包含(DNS,FTP,Samba)

今天我们来实现一个linux的基础项目&#xff0c;多做项目可以加深我们对每个服务的掌握程度&#xff0c;能更加的熟悉各个服务的使用&#xff0c;以及每个服务之间如何相互应用&#xff0c;我们可以有一个清晰的认知&#xff0c;那么接下来我们就开始项目的实操。 一、 项目背…

鸿蒙面试 --- 性能优化

性能优化可以从三个方面入手 感知流畅、渲染性能、运行性能 感知流畅 在应用开发中&#xff0c;动画可以为用户界面增添生动、流畅的交互效果&#xff0c;提升用户对应用的好感度。然而&#xff0c;滥用动画也会导致应用性能下降&#xff0c;消耗过多的系统资源&#xff0c;…

UWB数字钥匙安全测距和场景应用

1. CCC数字钥匙 2021年7月CCC将UWB定义为第三代数字钥匙的核心技术&#xff0c;并发布CCC R3&#xff08;第三代数字钥匙&#xff09;规范。 CCC R3是基于NFC/BLE/UWB作为基础的无线电技术的使用&#xff0c;该系统采用非对称密码技术对车辆和设备进行相互签名认证&#xff0…

使用Compose Multiplatform开发跨平台的Android调试工具

背景 最近对CMP跨平台很感兴趣&#xff0c;为了练手&#xff0c;在移动端做了一个Android和IOS共享UI和逻辑代码的天气软件&#xff0c;简单适配了一下双端的深浅主题切换&#xff0c;网络状态监测&#xff0c;刷新调用振动器接口。 做了两年多车机Android开发&#xff0c;偶…

ubuntu22开机自动登陆和开机自动运行google浏览器自动打开网页

一、开机自动登陆 1、打开settings->点击Users 重启系统即可自动登陆桌面 二、开机自动运行google浏览器自动打开网页 1、安装google浏览器 sudo wget https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb sudo dpkg -i ./google-chrome-stable…

前端学习笔记之文件下载(1.0)

因为要用到这样一个场景&#xff0c;需要下载系统的使用教程&#xff0c;所以在前端项目中就提供了一个能够下载系统教程的一个按钮&#xff0c;供使用者进行下载。 所以就试着写一下这个功能&#xff0c;以一个demo的形式进行演示&#xff0c;在学习的过程中也发现了中文路径…

FPGA实现GTP光口视频转USB3.0传输,基于FT601+Aurora 8b/10b编解码架构,提供3套工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目我这里已有的 GT 高速接口解决方案本博已有的FPGA驱动USB通信方案 3、工程详细设计方案工程设计原理框图输入Sensor之-->OV5640摄像头输入Sensor之-->芯片解码的…

借助nntools的模型训练(图像去噪任务, PyTorch)

在跑通开源代码的过程中&#xff0c;一直难以找到很合适的代码框架或代码模板&#xff0c;尤其对于初学者而言是不小的挑战。本人在跑代码的过程中&#xff0c;发现在GitHub上有一个辅助训练过程的模板。这篇文章主要记录它的使用方法&#xff0c;并标记来源。 代码均在jupyter…

C# 常量

文章目录 前言一、整数常量&#xff08;一&#xff09;合法与非法实例对比&#xff08;二&#xff09;不同进制及类型示例 二、浮点常量三、字符常量四、字符串常量五、定义常量 前言 在 C# 编程的世界里&#xff0c;常量是一类特殊的数据元素&#xff0c;它们如同程序中的 “定…

PHP 生成分享海报

因为用户端有多个平台&#xff0c;如果做分享海报生成&#xff0c;需要三端都来做&#xff0c;工作量比较大。 所以这个艰巨的任务就光荣的交给后端了。经过一定时间的研究和调试&#xff0c;最终圆满完成了任务&#xff0c;生成分享海报图片实现笔记如下。 目录 准备字体文件…

探索Python词云库WordCloud的奥秘

文章目录 探索Python词云库WordCloud的奥秘1. 背景介绍&#xff1a;为何选择WordCloud&#xff1f;2. WordCloud库简介3. 安装WordCloud库4. 简单函数使用方法5. 应用场景示例6. 常见Bug及解决方案7. 总结 探索Python词云库WordCloud的奥秘 1. 背景介绍&#xff1a;为何选择Wo…