【算法day3】链表:增删改查及其应用

题目引用


  1. 移除链表元素
  2. 设计链表
  3. 翻转链表

链表介绍


链表与数组不同的是,它是以指针串联在一起的分布在内存随机位置上的,而不是像指针一样占用整块的连续空间。因此也不支持通过指针++读取。所以在题目里面总是比较抽象,需要通过画图来帮助解题。一般出现在算法里面的都会是单链表,结构形如

struct ListNode {int val;ListNode *next;ListNode() : val(0), next(nullptr) {}ListNode(int x) : val(x), next(nullptr) {}ListNode(int x, ListNode *next) : val(x), next(next) {}

1.移除链表元素


给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val == val 的节点,并返回 新的头节点 。
示例 1:
输入:head = [1,2,6,3,4,5,6], val = 6
输出:[1,2,3,4,5]
示例 2:
输入:head = [], val = 1
输出:[]
示例 3:
输入:head = [7,7,7,7], val = 7
输出:[]

来看一下题目~
题目要求我们删除链表中 ==val 的元素,因此我们需要遍历一遍数组将 ==val 的节点删掉,怎么删呢?
首先定义一个cur指针,当cur指针所在节点的下一个节点的值 ==val 时,我们使用一个tmp指针指向它,然后 cur指针指向的节点将 next 指向 tmp 的下一个节点,完成删除。
初始化
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最后附上代码:

 ListNode* removeElements(ListNode* head, int val) {while(head!=NULL&&head->val==val){ListNode*tmp=head;head=head->next;delete tmp;}ListNode* cur=head;while(cur!=NULL && cur->next!=NULL){if(cur->next->val==val){ListNode* tmp=cur->next;cur->next=cur->next->next;delete tmp;}else{cur=cur->next;}}return head;}

这里值得注意的是头结点位置的值,如果头结点的值 ==val 的话,需要我们直接从头结点删除,并把头结点指针移动到下一个位置。

设计链表


你可以选择使用单链表或者双链表,设计并实现自己的链表。
单链表中的节点应该具备两个属性:val 和 next 。val 是当前节点的值,next 是指向下一个节点的指针/引用。
如果是双向链表,则还需要属性 prev 以指示链表中的上一个节点。假设链表中的所有节点下标从 0 开始。
实现 MyLinkedList 类:
MyLinkedList() 初始化 MyLinkedList 对象。
int get(int index) 获取链表中下标为 index 的节点的值。如果下标无效,则返回 -1 。
void addAtHead(int val) 将一个值为 val 的节点插入到链表中第一个元素之前。在插入完成后,新节点会成为链表的第一个节点。
void addAtTail(int val) 将一个值为 val 的节点追加到链表中作为链表的最后一个元素。
void addAtIndex(int index, int val) 将一个值为 val 的节点插入到链表中下标为 index 的节点之前。如果 index 等于链表的长度,那么该节点会被追加到链表的末尾。如果 index 比长度更大,该节点将 不会插入 到链表中。
void deleteAtIndex(int index) 如果下标有效,则删除链表中下标为 index 的节点。
示例:
输入
[“MyLinkedList”, “addAtHead”, “addAtTail”, “addAtIndex”, “get”, “deleteAtIndex”, “get”]
[[], [1], [3], [1, 2], [1], [1], [1]]
输出
[null, null, null, null, 2, null, 3]
解释
MyLinkedList myLinkedList = new MyLinkedList();
myLinkedList.addAtHead(1);
myLinkedList.addAtTail(3);
myLinkedList.addAtIndex(1, 2); // 链表变为 1->2->3
myLinkedList.get(1); // 返回 2
myLinkedList.deleteAtIndex(1); // 现在,链表变为 1->3
myLinkedList.get(1); // 返回 3

这里我们就选择难度较大的单链表来实现吧
首先需要自己定义一个链表节点,这个在文章开头就有,直接copy~
然后在类内初始化链表长度_size和一个虚拟头指针dummyhead
首先是构造函数,在构造函数内给_sizedummyhead赋值和开辟空间

MyLinkedList() {_size=0;dummyHead=new ListNode(0);        }

然后是get函数,返回index位置的值,这里需要判断index位置是否越界,接着遍历链表找到index位置的节点并返回val

int get(int index) {if(index<0||index>(_size-1))return -1;ListNode* cur=dummyHead->next;while(index--){cur=cur->next;}return cur->_val;}

头插函数,这里new一个新节点,将新节点的next指针指向dummyhead的下一个节点,dummyheadnext指向新节点,别忘了++_size

 void addAtHead(int val) {ListNode* newNode=new ListNode(val);newNode->next=dummyHead->next;dummyHead->next=newNode;_size++;}

尾插,一路循环到链表的尾节点,将尾节点的next指针指向新节点

void addAtTail(int val) {ListNode* newNode=new ListNode(val);ListNode*cur=dummyHead;while(cur->next!=nullptr){cur=cur->next;}cur->next=newNode;_size++;}

接下来的插入删除指定位置函数都比较简单,就直接上完整代码吧

class MyLinkedList {
public:struct ListNode{struct ListNode* next;int _val;ListNode(int val):_val(val),next(nullptr){}};MyLinkedList() {_size=0;dummyHead=new ListNode(0);        }int get(int index) {if(index<0||index>(_size-1))return -1;ListNode* cur=dummyHead->next;while(index--){cur=cur->next;}return cur->_val;}void addAtHead(int val) {ListNode* newNode=new ListNode(val);newNode->next=dummyHead->next;dummyHead->next=newNode;_size++;}void addAtTail(int val) {ListNode* newNode=new ListNode(val);ListNode*cur=dummyHead;while(cur->next!=nullptr){cur=cur->next;}cur->next=newNode;_size++;}void addAtIndex(int index, int val) {if(index>_size)return;if(index<0) index=0;ListNode* newNode=new ListNode(val);ListNode* cur=dummyHead;while(index--){cur=cur->next;}newNode->next=cur->next;cur->next=newNode;_size++;}void deleteAtIndex(int index) {if(index<0||(index>=_size))return;ListNode* cur=dummyHead;while(index--){cur=cur->next;}ListNode* tmp=cur->next;cur->next=cur->next->next;delete tmp;_size--;}
private:int _size;ListNode* dummyHead;
};

反转链表


给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。
示例 1:
在这里插入图片描述
输入:head = [1,2,3,4,5]
输出:[5,4,3,2,1]

我们来看一下题目,让我们将链表翻转之后返回头节点的指针。
这里有两种办法:一种从前往后遍历数组,一边将当前节点next指针指向下一个,一边向前遍历,最后返回当前节点的指针。
另一种通过递归直接来到倒数第二个节点位置,将尾节点的next的指针指向自己,再返回上一层调用。
我们两种都讲
第一种
我们定义cur指针指向headpre指针用于指向cur的前一个节点,再定义一个tmp用于记录cur指针的下一个位置
在这里插入图片描述
只要cur指针指向的节点存在,就使tmp指向cur指针的下一个节点,并把curnext指针指向pre所在位置,再将pre移动到cur位置cur移动到tmp位置,三个指针一次循环同时向前移动一次直到循环结束。
在这里插入图片描述
在这里插入图片描述
这里就附上代码供大家理解一下:

ListNode* reverseList(ListNode* head) {ListNode* pre=NULL; ListNode* cur=head;ListNode* tmp;while(cur){tmp=cur->next;cur->next=pre;pre=cur;cur=tmp;}return pre;}

第二种写法:
我们利用递归找到倒数第二个节点,利用倒数第二个节点将尾节点的next指针指向自己,然后返回上一层递归,不断调用直到所有节点的next指针都被翻转,返回接收的头指针。来看一下图。
在这里插入图片描述
附上代码:

ListNode* reverseList(ListNode* head) {// 边缘条件判断if(head == NULL) return NULL;if (head->next == NULL) return head;// 递归调用,翻转第二个节点开始往后的链表ListNode *last = reverseList(head->next);// 翻转头节点与第二个节点的指向head->next->next = head;// 此时的 head 节点为尾节点,next 需要指向 NULLhead->next = NULL;return last;}

总结


在遇到链表问题时,初学者切忌空想,一定要多画图,多思考,当你做出来一道时,就离做出一百道不远啦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/481047.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【通俗理解】步长和学习率在神经网络中是一回事吗?

【通俗理解】步长和学习率在神经网络中是一回事吗&#xff1f; 【核心结论】 步长&#xff08;Step Size&#xff09;和学习率&#xff08;Learning Rate, LR&#xff09;在神经网络中并不是同一个概念&#xff0c;但它们都关乎模型训练过程中的参数更新。 【通俗解释&#x…

Zookeeper选举算法与提案处理概览

共识算法(Consensus Algorithm) 共识算法即在分布式系统中节点达成共识的算法&#xff0c;提高系统在分布式环境下的容错性。 依据系统对故障组件的容错能力可分为&#xff1a; 崩溃容错协议(Crash Fault Tolerant, CFT) : 无恶意行为&#xff0c;如进程崩溃&#xff0c;只要…

Cesium 当前位置矩阵的获取

Cesium 位置矩阵的获取 在 3D 图形和地理信息系统&#xff08;GIS&#xff09;中&#xff0c;位置矩阵是将地理坐标&#xff08;如经纬度&#xff09;转换为世界坐标系的一种重要工具。Cesium 是一个强大的开源 JavaScript 库&#xff0c;用于创建 3D 地球和地图应用。在 Cesi…

SQL进阶技巧:非等值连接--单向近距离匹配

目录 0 场景描述 1 数据准备 2 问题分析 ​编辑 ​编辑 3 小结 数字化建设通关指南 0 场景描述 表 t_1 和表 t_2 通过 a 和 b 关联时&#xff0c;有相等的取相等的值匹配&#xff0c;不相等时每一 个 a 的值在 b 中找差值最小的来匹。 表 t_1&#xff1a;a 中无重复值…

微积分复习笔记 Calculus Volume 2 - 3.1

The first 2 chapters of volume 2 are the same as those in volume 1. Started with Chapter 3. 3.1 Integration by Parts - Calculus Volume 2 | OpenStax

红日靶场-5

环境搭建 这个靶场相对于前几个靶场来说较为简单&#xff0c;只有两台靶机&#xff0c;其中一台主机是win7&#xff0c;作为我们的DMZ区域的入口机&#xff0c;另外一台是windows2008&#xff0c;作为我们的域控主机&#xff0c;所以我们只需要给我们的win7配置两张网卡&#…

软通动力携子公司鸿湖万联、软通教育助阵首届鸿蒙生态大会成功举办

11月23日中国深圳&#xff0c;首届鸿蒙生态大会上&#xff0c;软通动力及软通动力子公司鸿湖万联作为全球智慧物联网联盟&#xff08;GIIC&#xff09;理事单位、鸿蒙生态服务&#xff08;深圳&#xff09;有限公司战略合作伙伴&#xff0c;联合软通教育深度参与了大会多项重磅…

Mac配置和启动 Tomcat

Tomcat 配置与启动&#xff1a; 配置 Tomcat&#xff1a; homebrew install tomcat 启动 Tomcat&#xff1a; 如果cd ~/tomcat/bin文件夹存在startup.sh文件&#xff0c;可以直接在终端运行&#xff1a;./startup.sh 如果~/bin目录下&#xff0c;只有catalina文件。则在终端运行…

基于matlab程序实现人脸识别

1.人脸识别流程 1.1.1基本原理 基于YCbCr颜色空间的肤色模型进行肤色分割。在YCbCr色彩空间内对肤色进行了建模发现&#xff0c;肤色聚类区域在Cb—Cr子平面上的投影将缩减&#xff0c;与中心区域显著不同。采用这种方法的图像分割已经能够较为精确的将人脸和非人脸分割开来。…

Java多线程介绍及使用指南

“多线程”&#xff1a;并发 要介绍线程&#xff0c;首先要区分开程序、进程和线程这三者的区别。 程序&#xff1a;具有一定功能的代码的集合&#xff0c;但是是静态的&#xff0c;没有启动运行 进程&#xff1a;启动运行的程序【资源的分配单位】 线程&#xff1a;进程中的…

[论文阅读]Poisoning Retrieval Corpora by Injecting Adversarial Passages

Poisoning Retrieval Corpora by Injecting Adversarial Passages 通过注入对抗性文本对检索语料库进行中毒 http://arxiv.org/abs/2310.19156 EMNLP2023 文章的目标就是要让检索器检索的结果包含攻击者生成的对抗性文本&#xff0c;如果能够检索到&#xff0c;则认为攻击成…

Leetcode 二叉树的锯齿形层序遍历

算法思想&#xff1a; 这段代码实现了 二叉树的锯齿形层序遍历&#xff0c;其核心思想是基于广度优先搜索&#xff08;BFS&#xff09;进行层序遍历&#xff0c;并根据当前层数决定从左到右或从右到左的顺序来组织每一层的节点值。 level.add 和 level.addFirst 有点类似单链…

OpenCV 图像轮廓查找与绘制全攻略:从函数使用到实战应用详解

摘要&#xff1a;本文详细介绍了 OpenCV 中用于查找图像轮廓的 cv2.findContours() 函数以及绘制轮廓的 cv2.drawContours() 函数的使用方法。涵盖 cv2.findContours() 各参数&#xff08;如 mode 不同取值对应不同轮廓检索模式&#xff09;及返回值的详细解析&#xff0c;搭配…

Linux操作系统2-进程控制3(进程替换,exec相关函数和系统调用)

上篇文章&#xff1a;Linux操作系统2-进程控制2(进程等待&#xff0c;waitpid系统调用&#xff0c;阻塞与非阻塞等待)-CSDN博客 本篇代码Gitee仓库&#xff1a;Linux操作系统-进程的程序替换学习 d0f7bb4 橘子真甜/linux学习 - Gitee.com 本篇重点&#xff1a;进程替换 目录 …

0基础学前端系列 -- 深入理解 HTML 布局

在现代网页设计中&#xff0c;布局是至关重要的一环。良好的布局不仅能提升用户体验&#xff0c;还能使内容更具可读性和美观性。HTML&#xff08;超文本标记语言&#xff09;结合 CSS&#xff08;层叠样式表&#xff09;为我们提供了多种布局方式。本文将详细介绍流式布局、Fl…

Springboot集成通义大模型

1.先到阿里云平台开头阿里云白炼账号&#xff0c;创建apiKey 2. 引入maven依赖 <dependency><groupId>com.alibaba</groupId><artifactId>dashscope-sdk-java</artifactId><version>2.8.3</version></dependency><!-- htt…

哈希表算法题

目录 题目一——1. 两数之和 - 力扣&#xff08;LeetCode&#xff09; 1.1.暴力解法1 1.2.暴力解法2 1.2.哈希表解法 题目二——面试题 01.02. 判定是否互为字符重排 - 力扣&#xff08;LeetCode&#xff09; 2.1.哈希表解法 2.2.排序解法 题目三——217. 存在重复元…

Cookie跨域

跨域&#xff1a;跨域名&#xff08;IP&#xff09; 跨域的目的是共享Cookie。 session操作http协议&#xff0c;每次既要request&#xff0c;也要response&#xff0c;cookie在创建的时候会产生一个字符串然后随着response返回。 全网站的各个页面都会带着登陆的时候的cookie …

个人博客接入github issue风格的评论,utteranc,gitment

在做个人博客的时候&#xff0c;如果你需要评论功能&#xff0c;但是又不想构建用户体系和评论模块&#xff0c;那么可以直接使用github的issue提供的接口&#xff0c;对应的开源项目有utteranc和gitment&#xff0c;尤其是前者。 它们的原理是一样的&#xff1a;在博客文章下…

React第十节组件之间传值之context

1、Context 使用creatContext() 和 useContext() Hook 实现多层级传值 概述&#xff1a; 在我们想要每个层级都需要某一属性&#xff0c;或者祖孙之间需要传值时&#xff0c;我们可以使用 props 一层一层的向下传递&#xff0c;或者我们使用更便捷的方案&#xff0c;用 creatC…