NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比

目录

    • NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元融合注意力机制时间序列预测,含优化前后对比,要求Matlab2023版以上;
2.单变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

模型描述

NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比。

下面是这个模型的主要组成部分和工作流程的简要说明:

数据预处理:首先,对时间序列数据进行预处理。划分训练集和测试集等。

卷积神经网络(CNN):通过使用CNN,模型可以自动学习输入数据的空间特征。CNN通常由多个卷积层和池化层组成,可以有效地提取输入数据的局部特征。

双向门控循环单元(BiGRU):双向门控循环单元是一种适用于序列数据建模的循环神经网络(RNN)变体。双向门控循环单元具有记忆单元和门控机制,可以捕捉输入数据的长期依赖关系。通过双向门控循环单元层,模型可以学习序列数据的时间依赖性。

多头注意力机制(Mutilhead Attention):多头注意力机制允许模型同时关注输入序列的不同部分。它通过将序列数据映射到多个子空间,并计算每个子空间的注意力权重来实现这一点。这样可以提高模型对不同时间步和特征之间关系的建模能力。

北方苍鹰算法优化:北方苍鹰算法是一种基于群体智能的优化算法,可以用于调整模型的超参数和优化训练过程。通过应用北方苍鹰算法算法,可以提高模型的性能和收敛速度。

融合和预测:最后,通过融合CNN、LSTM和多头注意力机制的输出,模型可以生成对未来时间步的多变量时间序列的预测。

需要注意的是,这是一种概念性的模型描述,具体实现的细节可能因应用场景和数据特征而有所不同。模型的性能和效果还需要根据具体问题进行评估和调优。

程序设计

  • 完整源码和数据获取方式NGO-CNN-BiGRU-Attention北方苍鹰算法优化卷积双向门控循环单元时间序列预测,含优化前后对比。
layers0 = [ ...% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')lstmLayer(25,'Outputmode','last','name','hidden1') selfAttentionLayer(2,2)          %创建2个头,2个键和查询通道的自注意力层  dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %regressionLayer('Name','output')    ];lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
pNum = round( pop *  P_percent );    % The population size of the producers   lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : popx( i, : ) = lb + (ub - lb) .* rand( 1, dim );  fit( i ) = fobj( x( i, : ) ) ;                       
endpFit = fit;                       
pX = x; XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin% Start updating the solutions.
for t = 1 : M    [fmax,B]=max(fit);worse= x(B,:);   r2=rand(1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for i = 1 : pNum    if(r2<0.9)r1=rand(1);a=rand(1,1);if (a>0.1)a=1;elsea=-1;endx( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)elseaaa= randperm(180,1);if ( aaa==0 ||aaa==90 ||aaa==180 )x(  i , : ) = pX(  i , :);   endtheta= aaa*pi/180;   x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      endx(  i , : ) = Bounds( x(i , : ), lb, ub );    fit(  i  ) = fobj( x(i , : ) );end [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness valuebestXX = x( bestII, : );             % bestXX denotes the current optimum position R=1-t/M;                           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew1 = bestXX.*(1-R); Xnew2 =bestXX.*(1+R);                    %%% Equation (3)Xnew1= Bounds( Xnew1, lb, ub );Xnew2 = Bounds( Xnew2, lb, ub );%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew11 = bestX.*(1-R); Xnew22 =bestX.*(1+R);                     %%% Equation (5)Xnew11= Bounds( Xnew11, lb, ub );Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  for i = ( pNum + 1 ) :12                  % Equation (4)x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 );fit(i ) = fobj(  x(i,:) ) ;end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/481391.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【0346】Postgres内核 Startup Process 通过 signal 与 postmaster 交互实现 (5)

1. Startup Process 进程 postmaster 初始化过程中, 在进入 ServerLoop() 函数之前,会先通过调用 StartChildProcess() 函数来开启辅助进程,这些进程的目的主要用来完成数据库的 XLOG 相关处理。 如: 核实 pg_wal 和 pg_wal/archive_status 文件是否存在Postgres先前是否发…

说说Elasticsearch拼写纠错是如何实现的?

大家好&#xff0c;我是锋哥。今天分享关于【说说Elasticsearch拼写纠错是如何实现的&#xff1f;】面试题。希望对大家有帮助&#xff1b; 说说Elasticsearch拼写纠错是如何实现的&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Elasticsearch 中&…

NAT拓展

NAT ALG&#xff08;NAT应用级网&#xff09; 为某些应用层协议&#xff0c;因为其报文内容可能携带IP相关信息&#xff0c;而普通NAT转化无法将这些IP转化&#xff0c;从而导致协议无法正常运行 例如FTP&#xff0c;DHCP&#xff0c;RSTP&#xff0c;ICMP&#xff0c;IPSEC…

Flutter:封装发送验证码组件,注册页使用获取验证码并传递控制器和验证码类型

验证码&#xff1a;view import package:flutter/material.dart; import package:get/get.dart; import index.dart;class SendcodePage extends GetView<SendcodeController> {// 接收注册页面&#xff0c;传进来的手机号控制器&#xff0c;和发送验证码的类型final Tex…

【目标跟踪】Anti-UAV数据集详细介绍

Anti-UAV数据集是在2021年公开的专用于无人机跟踪的数据集&#xff0c;该数据集采用RGB-T图像对的形式来克服单个类型视频的缺点&#xff0c;包含了318个视频对&#xff0c;并提出了相应的评估标准&#xff08;the state accurancy, SA)。 文章链接&#xff1a;https://arxiv.…

Linux的文件系统

这里写目录标题 一.文件系统的基本组成索引节点目录项文件数据的存储扇区三个存储区域 二.虚拟文件系统文件系统分类进程文件表读写过程 三.文件的存储连续空间存放方式缺点 非连续空间存放方式链表方式隐式链表缺点显示链接 索引数据库缺陷索引的方式优点&#xff1a;多级索引…

C++优选算法十七 多源BFS

1.单源最短路问题 一个起点一个终点。 定义&#xff1a;在给定加权图中&#xff0c;选择一个顶点作为源点&#xff0c;计算该源点到图中所有其他顶点的最短路径长度。 2.多源最短路问题 定义&#xff1a;多源最短路问题指的是在图中存在多个起点&#xff0c;需要求出从这些…

DAY141权限提升-Linux系统权限提升篇VulnhubCapability能力LD_Preload加载数据库等

一、演示案例-Linux系统提权-Web&用户-数据库类型 复现环境&#xff1a;Raven: 2 ~ VulnHub 1、信息收集 http://192.168.139.155/vendor/ 2、Web权限获取 searchsploit phpmailer find / -name 40969.py cp /usr/share/exploitdb/exploits/php/webapps/40969.py p.py p…

使用nginx请求转发时前端报跨域问题解决

当其他接口都没有问题&#xff0c;后端也进行了跨域的配置时&#xff0c;此时问题应该就出现在nginx中 我发现当上传文件大小小于1m时并不会发生错误&#xff0c;所以我们应该配置一下nginx允许上传文件的大小 在nginx.conf中添加 在nginx目录下重启nginx即可 &#xff08;Wi…

凭借 SpringBoot 构建新冠密接者跟踪系统:快速开发与部署优势凸显

第3章 系统分析 在进行系统分析之前&#xff0c;需要从网络上或者是图书馆的开发类书籍中收集大量的资料&#xff0c;因为这个环节也是帮助即将开发的程序软件制定一套最优的方案&#xff0c;一旦确定了程序软件需要具备的功能&#xff0c;就意味着接下来的工作和任务都是围绕着…

28.100ASK_T113-PRO Linux+QT 显示一张照片

1.添加资源文件 2. 主要代码 #include "mainwindow.h" #include "ui_mainwindow.h" #include <QImage> #include <QPixmap>MainWindow::MainWindow(QWidget *parent) :QMainWindow(parent),ui(new Ui::MainWindow) {ui->setupUi(this);QIm…

Android笔试面试题AI答之SQLite(1)

文章目录 1. 阐述什么是SQLite &#xff1f;一、定义与特点二、工作原理三、应用领域四、数据类型与语言绑定 2. Linux 上安装 SQLite方式简述 &#xff1f;一、使用包管理器安装&#xff08;以Debian/Ubuntu为例&#xff09;二、从官方网站下载并编译安装三、注意事项 3. SQLi…

CPU进行float16计算,C++的half.hpp使用方式FP16运算

C不直接支持fp16&#xff0c;如何支持float16的计算&#xff0c;我们使用half包来让C支持fp16计算。half.hpp是C中用于处理半精度浮点数&#xff08;float16&#xff09;的头文件。 一、下载Half包 1.1 下载地址&#xff1a; half&#xff1a;半精度浮点库 2.2 解压缩&…

【C++】LeetCode:LCR 026. 重排链表

题干 LCR 026. 重排链表 给定一个单链表 L 的头节点 head &#xff0c;单链表 L 表示为&#xff1a; L0 → L1 → … → Ln-1 → Ln 请将其重新排列后变为&#xff1a; L0 → Ln → L1 → Ln-1 → L2 → Ln-2 → … 不能只是单纯的改变节点内部的值&#xff0c;而是需要实…

蓝桥杯——递归

1、用递归实现阶乘 5*4*3*2*1120 package day3;public class Demo6 {public static void main(String[] args) {int result f(5);System.out.println(result);}private static int f(int i) {if(i1) {return 1;}return i * f(i-1);}}结果&#xff1a;120 2、爬楼梯 有一个楼…

Y20030012基于php+mysql的药店药品信息管理系统的设计与实现 源码 配置 文档

库存管理系统 1.摘要2. 系统功能3.功能结构图4.界面展示5.源码获取 1.摘要 21世纪是信息的时代&#xff0c;信息技术发展突飞猛进。各种信息化管理系统如雨后春笋一样出现。Internet的迅猛发展使其成为全球信息传递与共享的巨大的资源库。越来越多的网络环境下的Web应用系统被…

基于R语言森林生态系统结构、功能与稳定性分析与可视化

在生态学研究中&#xff0c;森林生态系统的结构、功能与稳定性是核心研究内容之一。这些方面不仅关系到森林动态变化和物种多样性&#xff0c;还直接影响森林提供的生态服务功能及其应对环境变化的能力。森林生态系统的结构主要包括物种组成、树种多样性、树木的空间分布与密度…

【Git 工具】用 IntelliJ IDEA 玩转 Git 分支与版本管理

文章目录 一、使用 IDEA 配置和操作 Git1.1 查看 Idea 中的 Git 配置1.2 克隆 Github 项目到本地 二、版本管理2.1 提交并推送修改2.2 拉取远程仓库2.3 查看历史2.4 版本回退 三、分支管理3.1 新建分支3.2 切换分支3.2 合并分支3.4 Cherry-Pick 参考资料 一、使用 IDEA 配置和操…

Flink学习连载文章8--时间语义

Time的分类 (时间语义) EventTime:事件(数据)时间,是事件/数据真真正正发生时/产生时的时间 IngestionTime:摄入时间,是事件/数据到达流处理系统的时间 ProcessingTime:处理时间,是事件/数据被处理/计算时的系统的时间 EventTime的重要性 假设&#xff0c;你正在去往地下停…

自定义类型: 结构体、枚举 、联合

目录 结构体 结构体类型的声明 匿名结构体 结构的自引用 结构体变量的定义和初始化 结构体成员变量的访问 结构体内存对齐 结构体传参 位段 位段类型的声明 位段的内存分配 位段的跨平台问题 位段的应用 枚举 枚举类型的定义 枚举的优点 联合体(共用体) 联合…