充分统计量(Sufficient Statistic)概念与应用: 中英双语

充分统计量:概念与应用

在统计学中,充分统计量(Sufficient Statistic) 是一个核心概念。它是从样本中计算得出的函数,能够完整且无损地表征样本中与分布参数相关的信息。在参数估计中,充分统计量能够帮助我们提取必要的统计信息,从而实现更高效的推断。

本文将从充分统计量的定义出发,结合指数族分布的例子,深入探讨这一概念及其在统计推断中的重要性。


1. 充分统计量的定义

设 ( X = { x 1 , x 2 , … , x n } X = \{x_1, x_2, \dots, x_n\} X={x1,x2,,xn} ) 是来自分布 ( p ( x ∣ θ ) p(x|\theta) p(xθ) ) 的样本,其中 ( θ \theta θ ) 是分布的参数。统计量 ( T ( X ) T(X) T(X) ) 被称为关于参数 ( θ \theta θ ) 的充分统计量,如果满足因子分解定理(Factorization Theorem)

p ( X ∣ θ ) = h ( X ) g ( T ( X ) , θ ) , p(X|\theta) = h(X) g(T(X), \theta), p(Xθ)=h(X)g(T(X),θ),

其中:

  • ( T ( X ) T(X) T(X) ) 是样本的函数,即统计量;
  • ( h ( X ) h(X) h(X) ) 是与 ( θ \theta θ ) 无关的函数;
  • ( g ( T ( X ) , θ ) g(T(X), \theta) g(T(X),θ) ) 是 ( T ( X ) T(X) T(X) ) 与 ( θ \theta θ ) 的联合函数。

直观解释:充分统计量 ( T ( X ) T(X) T(X) ) 能够提取样本中关于参数 ( θ \theta θ ) 的全部信息,( h ( X ) h(X) h(X) ) 则捕捉了样本中与 ( θ \theta θ ) 无关的其他信息。


2. 充分统计量的意义

假设我们已经计算了充分统计量 ( T ( X ) T(X) T(X) ),则原始样本 ( X X X ) 中的其他信息对于 ( θ \theta θ ) 的估计是冗余的。也就是说,利用 ( T ( X ) T(X) T(X) ) 进行推断,与直接使用整个样本 ( X X X ) 的效果是等价的。

例如,在正态分布 ( X ∼ N ( μ , σ 2 ) X \sim \mathcal{N}(\mu, \sigma^2) XN(μ,σ2) ) 中:

  • 样本均值 ( x ˉ = 1 n ∑ i = 1 n x i \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i xˉ=n1i=1nxi ) 是 ( μ \mu μ ) 的充分统计量;
  • 样本方差 ( s 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 s2=n1i=1n(xixˉ)2 ) 是 ( σ 2 \sigma^2 σ2 ) 的充分统计量。

3. 指数族分布与充分统计量

指数族分布是统计学中一类重要的分布形式,其概率密度函数(或质量函数)可以统一表示为:如果读者对指数族分布的概率密度函数的形式有疑问,请参考笔者的另一篇文章 指数族分布(Exponential Family of Distributions)的两种形式及其区别

p ( x ∣ θ ) = h ( x ) exp ⁡ ( η ( θ ) T t ( x ) − A ( θ ) ) , p(x|\theta) = h(x) \exp\left(\eta(\theta)^T t(x) - A(\theta)\right), p(xθ)=h(x)exp(η(θ)Tt(x)A(θ)),

其中:

  • ( η ( θ ) \eta(\theta) η(θ) ) 是参数 ( θ \theta θ ) 的自然参数;
  • ( t ( x ) t(x) t(x) ) 是样本的充分统计量;
  • ( A ( θ ) A(\theta) A(θ) ) 是规范化因子,保证分布的积分为 1;
  • ( h ( x ) h(x) h(x) ) 是与参数无关的测度函数。

3.1 常见的指数族分布例子

正态分布(均值已知,方差未知)

概率密度函数:
p ( x ∣ μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) . p(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). p(xμ,σ2)=2πσ2 1exp(2σ2(xμ)2).

写成指数族形式:
p ( x ∣ μ , σ 2 ) = exp ⁡ ( − 1 2 σ 2 x 2 + μ σ 2 x − μ 2 2 σ 2 − 1 2 ln ⁡ ( 2 π σ 2 ) ) . p(x|\mu, \sigma^2) = \exp\left(-\frac{1}{2\sigma^2} x^2 + \frac{\mu}{\sigma^2} x - \frac{\mu^2}{2\sigma^2} - \frac{1}{2} \ln(2\pi\sigma^2)\right). p(xμ,σ2)=exp(2σ21x2+σ2μx2σ2μ221ln(2πσ2)).

充分统计量为:
t ( x ) = { x , x 2 } . t(x) = \{x, x^2\}. t(x)={x,x2}.

泊松分布

概率质量函数:
p ( x ∣ λ ) = λ x e − λ x ! , x = 0 , 1 , 2 , … p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots p(xλ)=x!λxeλ,x=0,1,2,

写成指数族形式:
p ( x ∣ λ ) = exp ⁡ ( x ln ⁡ λ − λ − ln ⁡ x ! ) . p(x|\lambda) = \exp\left(x \ln \lambda - \lambda - \ln x!\right). p(xλ)=exp(xlnλλlnx!).

充分统计量为:
t ( x ) = x . t(x) = x. t(x)=x.

二项分布

概率质量函数:
p ( x ∣ n , p ) = ( n x ) p x ( 1 − p ) n − x , x = 0 , 1 , … , n . p(x|n, p) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n. p(xn,p)=(xn)px(1p)nx,x=0,1,,n.

写成指数族形式:
p ( x ∣ n , p ) = exp ⁡ ( x ln ⁡ p 1 − p + n ln ⁡ ( 1 − p ) + ln ⁡ ( n x ) ) . p(x|n, p) = \exp\left(x \ln \frac{p}{1-p} + n \ln (1-p) + \ln \binom{n}{x}\right). p(xn,p)=exp(xln1pp+nln(1p)+ln(xn)).

充分统计量为:
t ( x ) = x . t(x) = x. t(x)=x.


4. 应用场景

4.1 参数估计

充分统计量极大地简化了参数估计的过程。例如,在最大似然估计(MLE)中,充分统计量允许我们直接基于 ( T ( X ) T(X) T(X) ) 构建似然函数,而无需处理整个样本。

4.2 数据压缩

充分统计量将数据从高维样本 ( X X X ) 压缩为低维统计量 ( T ( X ) T(X) T(X) ),但仍然保留了关于参数 ( θ \theta θ ) 的全部信息。这对于大数据分析尤为重要。

4.3 贝叶斯推断

在贝叶斯框架中,充分统计量可以简化后验分布的计算,因为 ( p ( θ ∣ X ) ∝ p ( T ( X ) ∣ θ ) p ( θ ) p(\theta|X) \propto p(T(X)|\theta)p(\theta) p(θX)p(T(X)θ)p(θ) )。


5. 总结

充分统计量是统计推断中的关键工具,能够高效提取样本中关于分布参数的信息。通过指数族分布的形式化,我们不仅能够清晰地识别充分统计量,还能理解其在不同分布中的表现形式。充分统计量在参数估计、数据压缩和贝叶斯推断中的广泛应用,进一步凸显了其重要性。

读者在学习时,可以从正态分布、泊松分布等常见的指数族分布入手,尝试推导其充分统计量,以加深对这一概念的理解。

Sufficient Statistic: Concept and Applications

In statistics, the concept of sufficient statistic plays a fundamental role. A sufficient statistic is a function of a dataset that captures all the information about a parameter of interest contained within the data. By leveraging sufficient statistics, we can efficiently perform parameter inference without processing the entire dataset.

This article introduces sufficient statistics, their mathematical definition, and their relevance in statistical inference. We will illustrate the concept with examples from exponential family distributions, along with detailed mathematical formulations.


1. Definition of Sufficient Statistic

Let ( X = { x 1 , x 2 , … , x n } X = \{x_1, x_2, \dots, x_n\} X={x1,x2,,xn} ) be a sample drawn from a probability distribution ( p ( x ∣ θ p(x|\theta p(xθ) ), where ( θ \theta θ ) is the parameter of interest. A statistic ( T ( X ) T(X) T(X) ) is called a sufficient statistic for ( θ \theta θ ) if it satisfies the factorization theorem:

p ( X ∣ θ ) = h ( X ) g ( T ( X ) , θ ) , p(X|\theta) = h(X) \, g(T(X), \theta), p(Xθ)=h(X)g(T(X),θ),

where:

  • ( T ( X ) T(X) T(X) ) is the statistic (a function of the data);
  • ( h ( X ) h(X) h(X) ) is a function independent of ( θ \theta θ );
  • ( g ( T ( X ) , θ ) g(T(X), \theta) g(T(X),θ) ) depends only on ( T ( X ) T(X) T(X) ) and ( θ \theta θ ).

Intuition

A sufficient statistic ( T ( X ) T(X) T(X) ) extracts all the information about ( θ \theta θ ) from the dataset ( X X X ). Once ( T ( X ) T(X) T(X) ) is computed, the original dataset ( X X X ) provides no additional value for parameter estimation.


2. Importance of Sufficient Statistics

  1. Efficient Parameter Estimation
    Once the sufficient statistic ( T ( X ) T(X) T(X) ) is computed, we can perform inference on ( θ \theta θ ) without using the entire dataset. This simplifies calculations, especially for large datasets.

  2. Data Compression
    A sufficient statistic reduces the dimensionality of the data while retaining all relevant information about ( θ \theta θ ). For example, instead of using a large dataset, we only need ( T ( X ) T(X) T(X) ), which is often a low-dimensional vector.

  3. Bayesian Inference
    In Bayesian statistics, the posterior distribution ( p ( θ ∣ X ) p(\theta|X) p(θX) ) depends only on ( T ( X ) T(X) T(X) ). This simplifies the computation of posterior distributions.


3. Exponential Family and Sufficient Statistics

The exponential family of distributions provides a convenient framework for identifying sufficient statistics. A probability distribution belongs to the exponential family if it can be expressed as:

p ( x ∣ θ ) = h ( x ) exp ⁡ ( η ( θ ) T t ( x ) − A ( θ ) ) , p(x|\theta) = h(x) \exp\left(\eta(\theta)^T t(x) - A(\theta)\right), p(xθ)=h(x)exp(η(θ)Tt(x)A(θ)),

where:

  • ( η ( θ ) \eta(\theta) η(θ) ) is the natural parameter;
  • ( t ( x ) t(x) t(x) ) is the sufficient statistic;
  • ( A ( θ ) A(\theta) A(θ)) is the log-partition function, ensuring normalization;
  • ( h ( x ) h(x) h(x) ) is a base measure independent of ( θ \theta θ ).

3.1 Examples of Exponential Family Distributions

Normal Distribution (( μ \mu μ ) known, ( σ 2 \sigma^2 σ2 ) unknown)

Probability density function:
p ( x ∣ σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) . p(x|\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right). p(xσ2)=2πσ2 1exp(2σ2(xμ)2).

Rewritten in exponential family form:
p ( x ∣ σ 2 ) = exp ⁡ ( − 1 2 σ 2 x 2 + μ σ 2 x − μ 2 2 σ 2 − 1 2 ln ⁡ ( 2 π σ 2 ) ) . p(x|\sigma^2) = \exp\left(-\frac{1}{2\sigma^2}x^2 + \frac{\mu}{\sigma^2}x - \frac{\mu^2}{2\sigma^2} - \frac{1}{2}\ln(2\pi\sigma^2)\right). p(xσ2)=exp(2σ21x2+σ2μx2σ2μ221ln(2πσ2)).

The sufficient statistic is:
t ( x ) = { x , x 2 } . t(x) = \{x, x^2\}. t(x)={x,x2}.

Poisson Distribution

Probability mass function:
p ( x ∣ λ ) = λ x e − λ x ! , x = 0 , 1 , 2 , … p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots p(xλ)=x!λxeλ,x=0,1,2,

Rewritten in exponential family form:
p ( x ∣ λ ) = exp ⁡ ( x ln ⁡ λ − λ − ln ⁡ x ! ) . p(x|\lambda) = \exp\left(x \ln \lambda - \lambda - \ln x!\right). p(xλ)=exp(xlnλλlnx!).

The sufficient statistic is:
t ( x ) = x . t(x) = x. t(x)=x.

Binomial Distribution

Probability mass function:
p ( x ∣ n , p ) = ( n x ) p x ( 1 − p ) n − x , x = 0 , 1 , … , n . p(x|n, p) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n. p(xn,p)=(xn)px(1p)nx,x=0,1,,n.

Rewritten in exponential family form:
p ( x ∣ n , p ) = exp ⁡ ( x ln ⁡ p 1 − p + n ln ⁡ ( 1 − p ) + ln ⁡ ( n x ) ) . p(x|n, p) = \exp\left(x \ln \frac{p}{1-p} + n \ln (1-p) + \ln \binom{n}{x}\right). p(xn,p)=exp(xln1pp+nln(1p)+ln(xn)).

The sufficient statistic is:
t ( x ) = x . t(x) = x. t(x)=x.


4. Applications of Sufficient Statistics

4.1 Maximum Likelihood Estimation (MLE)

The likelihood function for parameter ( θ \theta θ ) can be written in terms of the sufficient statistic ( T ( X ) T(X) T(X) ). This simplifies the optimization process in MLE, reducing computational complexity.

For example, for the Poisson distribution, the MLE for ( λ \lambda λ ) is:
λ ^ = ∑ i = 1 n x i n , \hat{\lambda} = \frac{\sum_{i=1}^n x_i}{n}, λ^=ni=1nxi,
where ( T ( X ) = ∑ i = 1 n x i T(X) = \sum_{i=1}^n x_i T(X)=i=1nxi ).

4.2 Bayesian Inference

In Bayesian inference, the posterior distribution depends only on ( T ( X ) T(X) T(X) ):
p ( θ ∣ X ) ∝ p ( T ( X ) ∣ θ ) p ( θ ) . p(\theta|X) \propto p(T(X)|\theta)p(\theta). p(θX)p(T(X)θ)p(θ).

This makes the computation of posterior distributions more tractable, especially in conjugate prior settings.

4.3 Data Summarization

Sufficient statistics compress data into a smaller, sufficient representation. For instance, in large-scale data applications, computing sufficient statistics instead of storing entire datasets saves storage and computational resources.


5. Summary

Sufficient statistics are a cornerstone of statistical inference, enabling efficient parameter estimation and data summarization. By focusing on the exponential family, we can better understand how sufficient statistics operate in various common distributions, such as the normal, Poisson, and binomial distributions.

Understanding and utilizing sufficient statistics not only simplifies complex statistical procedures but also offers practical advantages in data analysis, particularly in settings with large datasets or complex Bayesian models. Readers are encouraged to explore further by deriving sufficient statistics for different distributions and applying them to real-world problems.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/482330.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【青牛科技】2K02 电动工具专用调速电路芯片描述

概述: 2K02 是电动工具专用调速电路。内置稳压电路,温度系数好,可以调节输出频率以及占空比的振荡输出,广泛的应用于小型电钻,割草机等工具。 主要特点: ● 电源电压范围宽 ● 占空比可调 ● 温度系数好 …

内网穿透步骤

步骤 第一次需要验证token window和linux的方法不同。 然后 启动 cpolar 服务: 在命令窗口中输入 cpolar.exe htttp 8080,启动内网穿透服务。确保命令窗口保持开启状态,以维持穿透效果。 cpolar.exe hhttp 8080 成功后 注意事项 命令窗口…

FreeRTOS之vTaskStartScheduler实现分析

FreeRTOS之vTaskStartScheduler实现分析 1 FreeRTOS源码下载地址2 函数接口2.1 函数接口2.2 函数参数简介3 vTaskDelete的调用关系3.1 调用关系3.2 调用关系示意图 4 函数源码分析4.1 vTaskStartScheduler4.2 prvCreateIdleTasks4.2.1 prvCreateIdleTasks4.2.2 xTaskCreate 4.3…

基于群晖搭建个人图书架-TaleBook based on Docker

前言 在群晖Container Manager中部署失败,转通过ssh部署。 一、准备工作 名称备注群晖SSH“终端机和SNMP”中启用SSH软件secureCRT等docker-compose.ymlGithub下载并修改 二、过程 2.1 创建本地文件夹 本地路径为: /docker/Calibre/data 2.2 下载d…

Ubuntu24.04初始化教程(包含基础优化、ros2)

将会不断更新。但是所有都是基础且必要的操作。 为重装系统之后的环境配置提供便捷信息来源。记录一些错误的解决方案。 目录 构建系统建立系统备份**Timeshift: 系统快照和备份工具****安装 Timeshift****使用 Timeshift 创建快照****还原快照****自动创建快照** 最基本配置换…

【论文笔记】A Token-level Contrastive Framework for Sign Language Translation

🍎个人主页:小嗷犬的个人主页 🍊个人网站:小嗷犬的技术小站 🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。 基本信息 标题: A Token-level Contrastiv…

yolov5 解决:export GIT_PYTHON_REFRESH=quiet

当我们在第一次运行YOLOv5中的train.py程序时:可能会出现以下报错: This initial warning can be silenced or aggravated in the future by setting the $GIT_PYTHON_REFRESH environment variable. Use one of the following values: - quiet|q|silen…

基于springboot中小型制造企业质量管理系统源码和论文

信息数据从传统到当代,是一直在变革当中,突如其来的互联网让传统的信息管理看到了革命性的曙光,因为传统信息管理从时效性,还是安全性,还是可操作性等各个方面来讲,遇到了互联网时代才发现能补上自古以来的…

【实验13】使用预训练ResNet18进行CIFAR10分类

目录 1 数据处理 1.1 数据集介绍 1.2数据处理与划分 2 模型构建- Pytorch高层API中的Resnet18 3 模型训练 4 模型评价 5 比较“使用预训练模型”和“不使用预训练模型”的效果: 6 模型预测 7 完整代码 8 参考链接 1 数据处理 1.1 数据集介绍 数据规模&…

Java之链表1

文章目录 1. 链表1.11.2 链表的概念及其结构1.3 自己实现一个链表 1. 链表 1.1 之前我们学习了 顺序表ArrayList,并自己实现了 ArrayList ,发现它在删除元素和添加元素时很麻烦,最坏的情况时,需要将所有的元素移动,因…

二分搜索(三)x的平方根

69. x 的平方根 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: 2…

AI开发-数据可视化库-Seaborn

1 需求 概述 Seaborn 是一个基于 Python 的数据可视化库,它建立在 Matplotlib 之上。其主要目的是使数据可视化更加美观、方便和高效。它提供了高层次的接口和各种美观的默认主题,能够帮助用户快速创建出具有吸引力的统计图表,用于数据分析和…

使用docker-compose部署搜索引擎ElasticSearch6.8.10

背景 Elasticsearch 是一个开源的分布式搜索和分析引擎,基于 Apache Lucene 构建。它被广泛用于实时数据搜索、日志分析、全文检索等应用场景。 Elasticsearch 支持高效的全文搜索,并提供了强大的聚合功能,可以处理大规模的数据集并进行快速…

LeetCode—74. 搜索二维矩阵(中等)

仅供个人学习使用 题目描述: 给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非严格递增顺序排列。 每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中,返回 true…

Cento7 紧急模式无法正常启动,修复home挂载问题

Centos 7 开机失败进入紧急模式[emergency mode],解决方案。 通过journalctl -xb查看启动日志,定位发现/home目录无法正常挂载。 退出启动日志检查,进行修复。 进行问题修复 # 修复挂载问题 mkdir /home mount /dev/mapper/centos-home /ho…

Matlab mex- setup报错—错误使用 mex,未检测到支持的编译器...

错误日志: 在使用mex编译时报错提示:错误使用 mex,未检测到支持的编译器。您可以安装免费提供的 MinGW-w64 C/C 编译器;请参阅安装 MinGW-w64 编译器。有关更多选项,请访问https://www.mathworks.com/support/compile…

【C语言】二叉树(BinaryTree)的创建、3种递归遍历、3种非递归遍历、结点度的实现

代码主要实现了以下功能: 二叉树相关数据结构定义 定义了二叉树节点结构体 BiTNode,包含节点数据值(字符类型)以及指向左右子树的指针。 定义了顺序栈结构体 SqStack,用于存储二叉树节点指针,实现非递归遍历…

Android -- 简易音乐播放器

Android – 简易音乐播放器 播放器功能:* 1. 播放模式:单曲、列表循环、列表随机;* 2. 后台播放(单例模式);* 3. 多位置同步状态回调;处理模块:* 1. 提取文件信息:音频文…

Python语法基础(四)

🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” 高阶函数之map 高阶函数就是说,A函数作为B函数的参数,B函数就是高阶函数 map:映射 map(func,iterable) 这个是map的基本语法,…

大模型时代的人工智能基础与实践——基于OmniForce的应用开发教程

《大模型时代的人工智能基础与实践——基于 OmniForce 的应用开发教程》由京东探索研究院及京东教育联袂撰写,图文并茂地介绍传统人工智能和新一代人工智能(基于大模型的通用人工智能技术),展示人工智能广阔的应用场景。同时&…