Linux互斥量读写锁

一、互斥量

1.临界资源

        同一时刻只允许一个进程/线程访问的共享资源(比如文件、外设打印机)

2.临界区

        访问临界资源的代码

3.互斥机制

        mutex互斥锁,用来避免临界资源的访问冲突,访问临界资源前申请互斥锁,访问完释放锁

 形象点的说法 好比有一个公共卫生间,进去使用的人会给门上锁,使用完会开锁

4.创建互斥锁 

/*动态创建*/
pthread_mutex_t mutex
pthread_mutex_t_init(pthread_mutex_t *mutex,互斥锁属性 给NULL默认即可)
/*静态创建*/
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER

5.销毁互斥锁

pthread_mutex_destory(pthread_mutex_t *mutex)

Linux中,互斥锁不占任何资源,所以销毁锁不是必须的,可利用其返回值查询锁状态,锁定时返回EBUSY

6.申请互斥锁(P操作) 

pthread_mutex_lock(pthread_mutex_t *mutex) //无锁时阻塞等待
pthread_mutex_trylock(pthread_mutex_t *mutex) //无锁返回EBUSY

7.释放互斥锁(V操作)

pthread_mutex_unlock(pthread_mutex_t *mutex) 
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;FILE *fp;
void *func2(void *arg){pthread_detach(pthread_self());printf("This func2 thread\n");char str[]="I write func2 line\n";char c;int i=0;while(1){pthread_mutex_lock(&mutex);while(i<strlen(str)){c = str[i];fputc(c,fp);usleep(1);i++;}pthread_mutex_unlock(&mutex);i=0;usleep(1);}pthread_exit("func2 exit");}void *func(void *arg){pthread_detach(pthread_self());printf("This is func1 thread\n");char str[]="You read func1 thread\n";char c;int i=0;while(1){pthread_mutex_lock(&mutex);while(i<strlen(str)){c = str[i];fputc(c,fp);i++;usleep(1);}pthread_mutex_unlock(&mutex);i=0;usleep(1);}pthread_exit("func1 exit");
}int main(){pthread_t tid,tid2;void *retv;int i;fp = fopen("1.txt","a+");if(fp==NULL){perror("fopen");return 0;}pthread_create(&tid,NULL,func,NULL);pthread_create(&tid2,NULL,func2,NULL);while(1){    sleep(1);} }

二、读写锁

与互斥锁的区别是:

  • 互斥锁对所有线程一视同仁,同一时刻只允许一个线程访问临界资源

  • 读写锁区分读者和写者同一时刻只允许一个写者访问临界资源,而读者允许多个同时访问,更具体地:

    • 写锁状态时,其他写锁、读锁都被阻塞;

    • 读锁状态时,读锁不阻塞,写锁阻塞,但在写锁阻塞之后申请的读锁要阻塞等待写锁(否则重要的内容一直写不进去)

pthread_rwlock_t rwlock //定义读写锁
/*申请写锁*/
pthread_rwlock_wrlock(pthread_rwlock_t *rwlock)
pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock)
/*申请读锁*/
pthread_rwlock_rdlock(pthread_rwlock_t *rwlock)
pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock)
/*释放锁*/
pthread_rwlock_unlock(pthread_rwlock_t *rwlock)
/*销毁读写锁*/
pthread_rwlock_destory(pthread_rwlock_t *rwlock)
#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>pthread_rwlock_t rwlock;FILE *fp;
void * read_func(void *arg){pthread_detach(pthread_self());printf("read thread\n");char buf[32]={0};while(1){//rewind(fp);pthread_rwlock_rdlock(&rwlock);while(fgets(buf,32,fp)!=NULL){printf("%d,rd=%s\n",(int)arg,buf);usleep(1000);}pthread_rwlock_unlock(&rwlock);sleep(1);}}void *func2(void *arg){pthread_detach(pthread_self());printf("This func2 thread\n");char str[]="I write func2 line\n";char c;int i=0;while(1){pthread_rwlock_wrlock(&rwlock);while(i<strlen(str)){c = str[i];fputc(c,fp);usleep(1);i++;}pthread_rwlock_unlock(&rwlock);i=0;usleep(1);}pthread_exit("func2 exit");}void *func(void *arg){pthread_detach(pthread_self());printf("This is func1 thread\n");char str[]="You read func1 thread\n";char c;int i=0;while(1){pthread_rwlock_wrlock(&rwlock);while(i<strlen(str)){c = str[i];fputc(c,fp);i++;usleep(1);}pthread_rwlock_unlock(&rwlock);i=0;usleep(1);}pthread_exit("func1 exit");
}int main(){pthread_t tid1,tid2,tid3,tid4;void *retv;int i;fp = fopen("1.txt","a+");if(fp==NULL){perror("fopen");return 0;}pthread_rwlock_init(&rwlock,NULL);pthread_create(&tid1,NULL,read_func,1);pthread_create(&tid2,NULL,read_func,2);pthread_create(&tid3,NULL,func,NULL);pthread_create(&tid4,NULL,func2,NULL);while(1){    sleep(1);} }

死锁的避免

概念:有两把锁以上时,多个线程各自申请到锁时,紧接着申请其他线程占用着的锁,它们都会处于阻塞等待,形成【死锁】

避免方法:

  • 锁越少越好,一把锁无需考虑死锁问题

  • 调整锁的顺序

    • 一种笨策略是,某个线程如果想要申请多个锁,那么可以等其释放完,其他线程再申请

    • 另一种笨策略是,各个线程按同样的顺序申请多个锁

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/482482.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring boot之BeanDefinition介绍

在spring框架中IOC容器进行bean的创建和管理。Bean的创建是一个比较复杂的过程&#xff0c;它并不像我们创建对象一样只是直接new一下就行&#xff0c;虽然有些bean确实就是New一下。但在Spring中可以通过一些途径对bean进行增强扩展。在这个过程中&#xff0c;BeanDefinition作…

Ubuntu 服务器部署 Tomcat 并配置 SSL/TLS 证书

本文目录 准备登陆云服务器安装 Java下载 tomcat 包配置防火墙浏览器访问 Tomcat 默认页面以服务的形式运行 Tomcat创建 Tomcat 用户和组创建 systemd 服务文件启动 tomcat 服务 Tomcat webapps 文件目录部署一个静态网站tomcat 的配置文件 将域名解析到服务器Tomcat 配置 SSL/…

C++小问题

怎么分辨const修饰的是谁 是限定谁不能被改变的&#xff1f; 在C中&#xff0c;const关键字的用途和位置非常关键&#xff0c;它决定了谁不能被修改。const可以修饰变量、指针、引用等不同的对象&#xff0c;并且具体的作用取决于const的修饰位置。理解const的规则能够帮助我们…

PPT不能编辑,按钮都是灰色,怎么办?

PPT文件打开之后&#xff0c;发现无法编辑&#xff0c;再仔细查看发现工具栏中的功能按钮都是灰色的&#xff0c;无法使用&#xff0c;这是什么原因&#xff1f;该如何解决&#xff1f; 原因&#xff1a;无法编辑PPT文件&#xff0c;并且功能按钮都是灰色&#xff0c;这是因为…

相交链表和环形链表

&#xff08;一&#xff09;相交链表 相交链表 思路&#xff1a;先分别计算出A列表和B列表的长度&#xff0c;判断它们的尾节点是否相等&#xff0c;如果不相等就不相交&#xff0c;直接返回空。然后让两个列表中的长的列表先走它们的差距步&#xff0c;然后再一起走&#xff…

ARM架构下安装新版docker及docker-compose

一、常见CPU 架构&#xff1a; 二、环境信息 CPU架构操作系统配置HUAWEI Kunpeng 920 5220 aarch64openEuler 22.03 (LTS-SP3)64C128g15T 三、安装docker 3.1 二进制包下载 docker-ce 社区下载地址&#xff1a; wget https://mirrors.nju.edu.cn/docker-ce/linux/static/s…

LeetCode-315. Count of Smaller Numbers After Self

目录 题目描述 解题思路 【C】 【Java】 复杂度分析 LeetCode-315. Count of Smaller Numbers After Selfhttps://leetcode.com/problems/count-of-smaller-numbers-after-self/description/ 题目描述 Given an integer array nums, return an integer array counts whe…

【NLP 4、数学基础】

此去经年&#xff0c;应是良辰美景虚设 —— 24.11.28 一、线性代数 1.标量和向量 ① 标量 Scalar 一个标量就是一个单独的数 ② 向量 Vector 一个向量是一列数 可以把向量看作空间中的点&#xff0c;每个元素是不同坐标轴上的坐标 向量中有几个数&#xff0c;就叫作几维…

VideoBooth: Diffusion-based Video Generation with Image Prompts

VideoBooth: Diffusion-based Video Generation with Image Prompts 概括 文章提出了一个视频生成模型VideoBooth&#xff0c;输入一张图片和一个文本提示词&#xff0c;即可输出保持图片中物体且符合文本提示词要求的视频。 方法 粗-细两阶段设计&#xff1a;1&#xff09;…

Graphy 是一款终极、易于使用、功能齐全的 FPS 计数器、统计监视器和调试器,适用于您的 Unity 项目。

主要特点&#xff1a; Graph & Text: 图文&#xff1a; FPSMemory 记忆Audio 声音的Advanced device information 高级设备信息Debugging tools 调试工具 GitHub - Tayx94/graphy:Graphy 是适用于 Unity 项目的终极、易于使用、功能丰富的 FPS 计数器、统计监视器和调试…

ASP.NET Core 负载/压力测试

文章目录 一、第三方工具二、使用发布版本进行负载测试和压力测试 负载测试和压力测试对于确保 web 应用的性能和可缩放性非常重要。 尽管负载测试和压力测试的某些测试相似&#xff0c;但它们的目标不同。 负载测试&#xff1a;测试应用是否可以在特定情况下处理指定的用户负…

008静态路由-特定主机路由

按照如上配置&#xff0c;用192.168.0.1 电脑ping 192.168.1.1 发现能够ping通 用192.168.0.1 电脑ping 192.168.2.1 发现不能ping通 这是因为192.168.0.1 和 192.168.1.1 使用的是同一个路由器R1。 192.168.0.1 和 192.168.2.1 通信需要先经过R1&#xff0c;再经过R2 &#xf…

基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面

目录 1.算法仿真效果 2.算法涉及理论知识概要 3.MATLAB核心程序 4.完整算法代码文件获得 1.算法仿真效果 matlab2022a仿真结果如下&#xff08;完整代码运行后无水印&#xff09;&#xff1a; 仿真操作步骤可参考程序配套的操作视频。 2.算法涉及理论知识概要 在现代社会…

周鸿祎再次“创业”,盯上百度

周鸿祎特地拍了部短剧来推广的新产品&#xff0c;终于上线了。 11月27日晚间&#xff0c;360正式发布多模态内容创作引擎“纳米搜索”。 作为当前AI应用最红的赛道之一&#xff0c;AI搜索已经有腾讯、秘塔、商汤、抖音等公司入局。传统搜索老大百度也在发力。竞争不妨碍有搜索…

pytorch中一个tensor经过多次softmax会有什么变化?

在 PyTorch 中&#xff0c;一个 Tensor 经过多次 softmax 操作时&#xff0c;其值会逐渐趋向于某种分布&#xff0c;但并不会无限变化。以下是具体的行为与原因分析&#xff1a; 1. Softmax 的作用&#xff1a; Softmax 将输入张量的值转换为一个概率分布&#xff0c;满足以下…

汽车轮毂结构分析有哪些?国产3D仿真分析实现静力学+模态分析

本文为CAD芯智库原创&#xff0c;未经允许请勿复制、转载&#xff01; 之前分享了如何通过国产三维CAD软件如何实现「汽车/汽配行业产品设计」&#xff0c;兼容NX&#xff08;UG&#xff09;、Creo&#xff08;Proe&#xff09;&#xff0c;轻松降低企业上下游图纸交互成本等。…

深度学习中的生成对抗网络(GAN)原理与应用

引言 生成对抗网络&#xff08;Generative Adversarial Network&#xff0c;简称GAN&#xff09;是由Ian Goodfellow等人在2014年提出的一种深度学习模型&#xff0c;它通过对抗训练的方式生成与真实数据分布相似的假数据。GAN的出现极大地推动了深度学习和生成模型的研究&…

前端学习笔记之FileReader

概念 FileReader接口允许网页应用程序异步读取用户计算机上存储的文件&#xff08;或原始数据缓冲区&#xff09;的内容&#xff0c;使用File或Blob对象来制定要读取的文件或数据。 File对象可以通过用户使用<input>元素选择文件后返回的FileList对象获得&#xff0c;或…

Unity类银河战士恶魔城学习总结(P149 Screen Fade淡入淡出菜单)

【Unity教程】从0编程制作类银河恶魔城游戏_哔哩哔哩_bilibili 教程源地址&#xff1a;https://www.udemy.com/course/2d-rpg-alexdev/ 本章节实现了进入游戏和死亡之后的淡入淡出动画效果 UI_FadeScreen.cs 1. Animator 组件的引用 (anim) 该脚本通过 Animator 控制 UI 元…

win10系统部署RAGFLOW+Ollama教程

本篇主要基于linux服务器部署ragflowollama&#xff0c;其他操作系统稍有差异但是大体一样。 一、先决条件 CPU ≥ 4核&#xff1b; RAM ≥ 16 GB&#xff1b; 磁盘 ≥ 50 GB&#xff1b; Docker ≥ 24.0.0 & Docker Compose ≥ v2.26.1。 如果尚未在本地计算机&#xff…