spark-sql配置教程

1.前期准备

(1)首先要把hadoop集群,hive和spark等配置好

hadoop集群,hive的配置可以看看这个博主写的博客

大数据_蓝净云的博客-CSDN博客

或者看看黑马程序员的视频

黑马程序员大数据入门到实战教程,大数据开发必会的Hadoop、Hive,云平台实战项目全套一网打尽_哔哩哔哩_bilibili

对于博主本人,有关hadoop集群和hive的配置可以直接看这篇文章

黑马程序员hadoop三件套(hdfs,Mapreduce,yarn)的安装配置以及hive的安装配置-CSDN博客

spark配置参考文章:

spark的安装配置_spark基本配置-CSDN博客

(2)最好把Finalshell也下载好,具体下载教程详见如下文章:

保姆级教程下载finalshell以及连接云服务器基础的使用教程_finalshell下载安装-CSDN博客

2.配置spark-sql

(1)首先在node1登录root用户,接着进入hive安装目录conf目录,修改hive-site.xml

cd /export/server/apache-hive-3.1.3-bin/conf/
vi hive-site.xml

添加如下内容:
<property>
    <name>hive.spark.client.jar</name>
    <value>${SPARK_HOME}/lib/spark-assembly-*.jar</value>
</property>

<property><name>hive.spark.client.jar</name><value>${SPARK_HOME}/lib/spark-assembly-*.jar</value>
</property>

(2)拷贝hive-site.xml到/export/server/spark-3.4.4-bin-hadoop3/conf,同时分发到node2,node3节点

cp /export/server/apache-hive-3.1.3-bin/conf/hive-site.xml /export/server/spark-3.4.4-bin-hadoop3/conf/
scp /export/server/apache-hive-3.1.3-bin/conf/hive-site.xml node2:/export/server/spark-3.4.4-bin-hadoop3/conf/
scp /export/server/apache-hive-3.1.3-bin/conf/hive-site.xml node3:/export/server/spark-3.4.4-bin-hadoop3/conf/

(3)拷贝MYSQL驱动到/export/server/spark-3.4.4-bin-hadoop3/jars/,同时分发到node2,node3节点

cp /export/server/apache-hive-3.1.3-bin/lib/mysql-connector-java-5.1.34.jar /export/server/spark-3.4.4-bin-hadoop3/jars/
scp /export/server/spark-3.4.4-bin-hadoop3/jars/mysql-connector-java-5.1.34.jar node2:/export/server/spark-3.4.4-bin-hadoop3/jars/
scp /export/server/spark-3.4.4-bin-hadoop3/jars/mysql-connector-java-5.1.34.jar node3:/export/server/spark-3.4.4-bin-hadoop3/jars/

(4)在node1的/export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh 文件中配置 MySQL 驱动,同时分发到node2,node3节点

vi /export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh

 添加如下内容:
export SPARK_CLASSPATH=/export/server/spark-3.4.4-bin-hadoop3/jars/mysql-connector-java-5.1.34.jar

export SPARK_CLASSPATH=/export/server/spark-3.4.4-bin-hadoop3/jars/mysql-connector-java-5.1.34.jar

分发
scp /export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh node2:/export/server/spark-3.4.4-bin-hadoop3/conf/
scp /export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh node3:/export/server/spark-3.4.4-bin-hadoop3/conf/

scp /export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh node2:/export/server/spark-3.4.4-bin-hadoop3/conf/
scp /export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh node3:/export/server/spark-3.4.4-bin-hadoop3/conf/

(5)在node1修改日志级别,同时分发到node2,node3节点

cp /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties.template /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties
vi /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties

把以下这部分注释

rootLogger.level = info
rootLogger.appenderRef.stdout.ref = console 

注释后效果如下

# rootLogger.level = info
# rootLogger.appenderRef.stdout.ref = console

再添加以下内容:
rootLogger.level = warn
rootLogger.appenderRef.console.ref = console

rootLogger.level = warn
rootLogger.appenderRef.console.ref = console

再分发
scp /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties node2:/export/server/spark-3.4.4-bin-hadoop3/conf/
scp /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties node3:/export/server/spark-3.4.4-bin-hadoop3/conf/
 

scp /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties node2:/export/server/spark-3.4.4-bin-hadoop3/conf/
scp /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties node3:/export/server/spark-3.4.4-bin-hadoop3/conf/

3.体验spark-sql

(1)首先启动该启动的,在node1(此时是root用户)直接复制以下命令到命令行运行即可

su - hadoop
start-dfs.sh
start-yarn.sh
nohup /export/server/hive/bin/hive --service metastore >> /export/server/hive/logs/metastore.log 2>&1 &
cd /export/server/spark-3.4.4-bin-hadoop3/sbin
./start-all.sh
jps
spark-sql

效果如下

[root@node1 ~]# su - hadoop
Last login: Wed Dec  4 20:52:45 CST 2024 on pts/0
[hadoop@node1 ~]$ start-dfs.sh
Starting namenodes on [node1]
Starting datanodes
Starting secondary namenodes [node1]
[hadoop@node1 ~]$ start-yarn.sh
Starting resourcemanager
Starting nodemanagers
[hadoop@node1 ~]$ nohup /export/server/hive/bin/hive --service metastore >> /export/server/hive/logs/metastore.log 2>&1 &
[1] 39039
[hadoop@node1 ~]$ cd /export/server/spark-3.4.4-bin-hadoop3/sbin
[hadoop@node1 sbin]$ ./start-all.sh
starting org.apache.spark.deploy.master.Master, logging to /export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-node1.out
node2: starting org.apache.spark.deploy.worker.Worker, logging to /export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-node2.out
node3: starting org.apache.spark.deploy.worker.Worker, logging to /export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-node3.out
[hadoop@node1 sbin]$ jps
39952 Jps
37553 SecondaryNameNode
38978 WebAppProxyServer
36902 NameNode
39127 Master
39143 VersionInfo
38537 NodeManager
37118 DataNode
38335 ResourceManager
[hadoop@node1 sbin]$ spark-sql
24/12/04 22:20:18 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
24/12/04 22:20:20 WARN HiveConf: HiveConf of name hive.metastore.event.db.notification.api.auth does not exist
24/12/04 22:20:20 WARN HiveConf: HiveConf of name hive.spark.client.jar does not exist
Spark master: spark://node1:7077, Application Id: app-20241204222029-0000
spark-sql (default)> use demo1;

 

(2)在spark-sql中尝试一下写代码

随便选择一个数据库使用吧

use demo1;
-- 创建一个新表
CREATE TABLE employees (id INT,name STRING,salary DOUBLE
);
-- 插入单条记录
INSERT INTO employees VALUES (4, 'Alice', 1300);
-- 插入多条记录
INSERT INTO employees VALUES
(5, 'Bob', 1400),
(6, 'Charlie', 1100);
-- 查询表中的所有数据
SELECT * FROM employees;
-- 删除表
DROP TABLE IF EXISTS employees;

效果如下

spark-sql (default)> use demo1;
Time taken: 9.682 seconds
spark-sql (demo1)> -- 创建一个新表
spark-sql (demo1)> CREATE TABLE employees (>   id INT,>   name STRING,>   salary DOUBLE> );
24/12/04 22:22:50 WARN ResolveSessionCatalog: A Hive serde table will be created as there is no table provider specified. You can set spark.sql.legacy.createHiveTableByDefault to false so that native data source table will be created instead.
[TABLE_OR_VIEW_ALREADY_EXISTS] Cannot create table or view `demo1`.`employees` because it already exists.
Choose a different name, drop or replace the existing object, or add the IF NOT EXISTS clause to tolerate pre-existing objects.
spark-sql (demo1)> -- 删除表
spark-sql (demo1)> DROP TABLE IF EXISTS employees;
Time taken: 4.462 seconds
spark-sql (demo1)> -- 创建一个新表
spark-sql (demo1)> CREATE TABLE employees (>   id INT,>   name STRING,>   salary DOUBLE> );
24/12/04 22:23:29 WARN ResolveSessionCatalog: A Hive serde table will be created as there is no table provider specified. You can set spark.sql.legacy.createHiveTableByDefault to false so that native data source table will be created instead.
24/12/04 22:23:29 WARN SessionState: METASTORE_FILTER_HOOK will be ignored, since hive.security.authorization.manager is set to instance of HiveAuthorizerFactory.
Time taken: 1.541 seconds
spark-sql (demo1)> -- 插入单条记录
spark-sql (demo1)> INSERT INTO employees VALUES (4, 'Alice', 1300);
Time taken: 15.817 seconds
spark-sql (demo1)> -- 插入多条记录
spark-sql (demo1)> INSERT INTO employees VALUES> (5, 'Bob', 1400),> (6, 'Charlie', 1100);
Time taken: 10.018 seconds
spark-sql (demo1)> -- 查询表中的所有数据
spark-sql (demo1)> SELECT * FROM employees;
4       Alice   1300.0
5       Bob     1400.0
6       Charlie 1100.0
Time taken: 5.835 seconds, Fetched 3 row(s)
spark-sql (demo1)> -- 删除表
spark-sql (demo1)> DROP TABLE IF EXISTS employees;
Time taken: 0.784 seconds
spark-sql (demo1)> 

 

到这里,基本上就已经成功了! 

(3)关闭所有进程代码

先ctrl+C退出spark-sql
cd /export/server/spark-3.4.4-bin-hadoop3/sbin
./stop-all.sh
cd
stop-yarn.sh
stop-dfs.sh
jps
再通过kill -9 命令把RunJar进程给关闭掉
cd /export/server/spark-3.4.4-bin-hadoop3/sbin
./stop-all.sh
cd
stop-yarn.sh
stop-dfs.sh
jps

效果如下

Time taken: 0.784 seconds
spark-sql (demo1)> [hadoop@node1 sbin]$ 
[hadoop@node1 sbin]$ cd /export/server/spark-3.4.4-bin-hadoop3/sbin
[hadoop@node1 sbin]$ ./stop-all.sh
node2: stopping org.apache.spark.deploy.worker.Worker
node3: stopping org.apache.spark.deploy.worker.Worker
stopping org.apache.spark.deploy.master.Master
[hadoop@node1 sbin]$ cd
[hadoop@node1 ~]$ stop-yarn.sh
Stopping nodemanagers
Stopping resourcemanager
Stopping proxy server [node1]
[hadoop@node1 ~]$ stop-dfs.sh
Stopping namenodes on [node1]
Stopping datanodes
Stopping secondary namenodes [node1]
[hadoop@node1 ~]$ jps
64996 Jps
39039 RunJar
[hadoop@node1 ~]$ kill -9 39039
[hadoop@node1 ~]$ jps
66159 Jps
[1]+  Killed                  nohup /export/server/hive/bin/hive --service metastore >> /export/server/hive/logs/metastore.log 2>&1
[hadoop@node1 ~]$ jps
66219 Jps
[hadoop@node1 ~]$ 

4.参考文章

(1)黑马大数据学习笔记4-Hive部署和基本操作_黑马大数据 hive笔记-CSDN博客

(2)spark的安装配置_spark基本配置-CSDN博客

(3)Scala配置教程_统信 scala-CSDN博客

(4)大数据_蓝净云的博客-CSDN博客

5.补充笔记

(1)Hive 3.x版本通常会自动处理与Spark的集成

vi /export/server/apache-hive-3.1.3-bin/bin/hive 为什么我的hive文件里面没有这一行sparkAssemblyPath=`ls ${SPARK_HOME}/lib/spark-assembly-*.jar`

在 Hive 3.x 版本中,`sparkAssemblyPath` 这一行并不是标准的配置项。因此,你在 `hive` 启动脚本中没有看到这行配置是完全正常的。

### 为什么没有这行配置?

1. **Hive 版本更新**:从 Hive 2.x 到 Hive 3.x 的版本更新中,Hive 与 Spark 的集成方式发生了变化。特别是对于 Spark 2.x 及之后的版本,Spark 与 Hive 的集成不再依赖于传统的 `spark-assembly` JAR 文件。`spark-assembly` 是 Spark 1.x 版本的一个重要文件,在 Spark 2.x 及以后版本中,Spark 被重新架构,`spark-assembly` 文件已被拆分为多个 JAR 文件,因此不再需要在 Hive 启动脚本中通过 `sparkAssemblyPath` 来加载它。

2. **Hive 集成 Spark 的方式**:在 Hive 3.x 版本中,Spark 通过 `hive-site.xml` 和其他配置文件进行集成,而不再需要在 Hive 启动脚本中显式地指定 Spark 的 JAR 文件路径。Spark 会根据环境变量或配置文件自动加载所需的 JAR 文件。

### 解决方案

如果你希望在 Hive 中集成 Spark,并且需要 Spark 的相关配置,可以通过以下方法进行配置:

1. **确保 Hive 配置文件正确**:
   - 在 `hive-site.xml` 中设置与 Spark 相关的参数,尤其是 Spark SQL 引擎和 Metastore 配置。

2. **设置 `SPARK_HOME` 环境变量**:
   - 确保你的 Hive 环境能够找到正确的 Spark 配置,可以通过设置环境变量 `SPARK_HOME` 来指定 Spark 的安装路径。

3. **添加 Spark JAR 到 `SPARK_CLASSPATH`**:
   - 如果你确实需要手动指定 Spark 的 JAR 文件(例如,如果 Spark 配置文件没有被自动加载),可以在 `spark-env.sh` 中设置 `SPARK_CLASSPATH` 来指定 Spark JAR 文件的路径:

   ```bash
   export SPARK_CLASSPATH=/path/to/spark/jars/*.jar
   ```

4. **启动 Hive 与 Spark 结合的服务**:
   - 启动 Spark 时可以通过 `spark-submit` 或 `spark-sql` 来运行 Spark SQL 查询,并确保 Hive Metastore 已经启动。

### 如何检查 Hive 与 Spark 集成是否正常

1. **检查 Hive Metastore 是否正常运行**:
   你可以通过命令查看 Hive Metastore 服务是否启动成功:

   ```bash
   hive --service metastore
   ```

2. **测试 Hive 和 Spark 的连接**:
   在 `spark-sql` 中执行以下命令,检查 Spark 能否正常读取 Hive 数据库:

   ```bash
   spark-sql --conf spark.sql.warehouse.dir=/path/to/hive/warehouse
   ```

3. **查看 Spark 的 JAR 文件路径**:
   确保 Spark 的所有必要 JAR 文件都在 Spark 的 `jars` 目录下,可以使用以下命令列出 Spark 中的所有 JAR 文件:

   ```bash
   ls $SPARK_HOME/jars
   ```

### 总结

在 Hive 3.x 版本中,`sparkAssemblyPath` 的配置项已经不再使用,而是通过配置文件和环境变量来管理 Spark 与 Hive 的集成。如果你需要手动配置 Spark 的 JAR 文件路径,可以通过 `SPARK_CLASSPATH` 环境变量或者在 `spark-env.sh` 中指定。

(2)之前遇到的报错

[hadoop@node1 sbin]$ ./start-all.sh starting org.apache.spark.deploy.master.Master, logging to /export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-node1.out node3: starting org.apache.spark.deploy.worker.Worker, logging to /export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-node3.out node2: starting org.apache.spark.deploy.worker.Worker, logging to /export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-node2.out [hadoop@node1 sbin]$

您已经成功执行了 `./start-all.sh` 脚本来启动 Spark 集群。根据输出信息:

```
starting org.apache.spark.deploy.master.Master, logging to /export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-node1.out
node3: starting org.apache.spark.deploy.worker.Worker, logging to /export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-node3.out
node2: starting org.apache.spark.deploy.worker.Worker, logging to /export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-node2.out
```

说明:
- **Master** 节点已经启动,并且日志文件 `spark-hadoop-org.apache.spark.deploy.master.Master-1-node1.out` 已经开始记录 Master 进程的日志。
- **Worker** 节点也在 `node2` 和 `node3` 上启动,并且相应的日志文件已经生成。

### 接下来您可以做以下几步来验证集群是否正常启动:

#### 1. **检查 Master 节点状态**
您可以通过访问 Spark Master UI 来检查 Master 节点是否正常启动。默认情况下,Spark Master 的 Web UI 运行在 `7077` 端口。您可以访问以下 URL:

```
http://node1:8080
```

这是 Spark Master 的 Web UI,您应该能看到集群状态、Worker 节点以及其他信息。如果页面能够正常加载且显示了 Worker 节点的状态(如 `node2` 和 `node3`),说明 Master 节点和 Worker 节点正常工作。

#### 2. **检查 Worker 节点状态**
您还可以检查各个 Worker 节点的 Web UI 来查看其状态。默认情况下,Spark Worker 的 Web UI 运行在 `8081` 端口。您可以访问以下 URL:

```
http://node2:8081
http://node3:8081
```

如果 Worker 节点也显示正常并且没有错误信息,那么说明 Worker 节点已成功加入集群。

#### 3. **查看日志文件**
查看日志文件以确保没有错误:

- **Master 节点日志**:  
  `/export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-node1.out`

- **Worker 节点日志**:  
  `/export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-node2.out`  
  `/export/server/spark-3.4.4-bin-hadoop3/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-node3.out`

如果日志中有错误信息,可能需要根据日志内容进一步诊断问题。

#### 4. **提交 Spark 作业**
您还可以提交一个简单的 Spark 作业来测试集群是否正常运行。例如,您可以使用以下命令提交一个简单的 Spark 程序:

```bash
spark-submit --class org.apache.spark.examples.SparkPi --master spark://node1:7077 $SPARK_HOME/examples/jars/spark-examples_2.12-3.4.4.jar 10
```

这将提交一个计算 Pi 值的示例作业。如果集群正常,作业应该能够运行,并且您可以看到结果。

### 总结:
- 确认通过 Web UI (`http://node1:8080` 和 `http://node2:8081`, `http://node3:8081`) 检查 Spark 集群状态。
- 查看日志文件确保没有错误。
- 通过提交简单的作业来测试集群的可用性。

如果您在过程中遇到任何问题或有其他问题,随时可以向我询问!

(3)配置的txt参考

1.进入hive安装目录conf目录,修改hive-site.xml
cd /export/server/apache-hive-3.1.3-bin/conf/
vi hive-site.xml
添加如下内容:
<property>
    <name>hive.spark.client.jar</name>
    <value>${SPARK_HOME}/lib/spark-assembly-*.jar</value>
</property>

2.拷贝hive-site.xml到/export/server/spark-3.4.4-bin-hadoop3/conf
cp /export/server/apache-hive-3.1.3-bin/conf/hive-site.xml /export/server/spark-3.4.4-bin-hadoop3/conf/

scp /export/server/apache-hive-3.1.3-bin/conf/hive-site.xml node2:/export/server/spark-3.4.4-bin-hadoop3/conf/
scp /export/server/apache-hive-3.1.3-bin/conf/hive-site.xml node3:/export/server/spark-3.4.4-bin-hadoop3/conf/

3.拷贝MYSQL驱动到/export/server/spark-3.4.4-bin-hadoop3/jars
cd /export/server/apache-hive-3.1.3-bin/lib/
cp /export/server/apache-hive-3.1.3-bin/lib/mysql-connector-java-5.1.34.jar /export/server/spark-3.4.4-bin-hadoop3/jars/


scp /export/server/spark-3.4.4-bin-hadoop3/jars/mysql-connector-java-5.1.34.jar node2:/export/server/spark-3.4.4-bin-hadoop3/jars/
scp /export/server/spark-3.4.4-bin-hadoop3/jars/mysql-connector-java-5.1.34.jar node3:/export/server/spark-3.4.4-bin-hadoop3/jars/

4.在所有节点/export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh 文件中配置 MySQL 驱动
vi /export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh
添加如下内容:
export SPARK_CLASSPATH=/export/server/spark-3.4.4-bin-hadoop3/jars/mysql-connector-java-5.1.34.jar

分发
scp /export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh node2:/export/server/spark-3.4.4-bin-hadoop3/conf/
scp /export/server/spark-3.4.4-bin-hadoop3/conf/spark-env.sh node3:/export/server/spark-3.4.4-bin-hadoop3/conf/

5.修改日志级别,在各节点:
cp /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties.template /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties

vi /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties


在文件中找到log4j2.rootCategory的设置,并将其修改为:
原来的
rootLogger.level = info
rootLogger.appenderRef.stdout.ref = console
把原来的那个注释
再添加以下内容:
rootLogger.level = warn
rootLogger.appenderRef.console.ref = console
再分发
scp /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties node2:/export/server/spark-3.4.4-bin-hadoop3/conf/
scp /export/server/spark-3.4.4-bin-hadoop3/conf/log4j2.properties node3:/export/server/spark-3.4.4-bin-hadoop3/conf/

6.启动该启动的,访问spark-sql
su - hadoop
start-dfs.sh
start-yarn.sh
nohup /export/server/hive/bin/hive --service metastore >> /export/server/hive/logs/metastore.log 2>&1 &
cd /export/server/spark-3.4.4-bin-hadoop3/sbin
./start-all.sh
jps
spark-sql
7.在spark-sql中尝试一下写代码
use demo1;

-- 创建一个新表
CREATE TABLE employees (
  id INT,
  name STRING,
  salary DOUBLE
);

-- 插入单条记录
INSERT INTO employees VALUES (4, 'Alice', 1300);

-- 插入多条记录
INSERT INTO employees VALUES
(5, 'Bob', 1400),
(6, 'Charlie', 1100);

-- 查询表中的所有数据
SELECT * FROM employees;

-- 删除表
DROP TABLE IF EXISTS employees;


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/483832.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git分布式版本控制工具 Git基本概念、Git工作流程、Git常用命令、Git远程仓库、IDEA操作Git

目录 ​​​​​​ 1.Git基本概念 1.1 概述 1.1.1 开发中的实际场景 1.1.2 版本控制器的方式 1.1.2.1 集中式版本控制工具(SVN) 1.1.2.2 分布式版本控制工具(Git) 2.概述git工作流程 3.Git常用命令 3.1 Git环境配置 3.1.1 下载与安装 3.1.2 基本配置 3.1.3 为常用指令配置别名&…

“停车费“ 在英语中常见的表达方式,柯桥职场英语生活口语商务英语学习

“停车费”用英语怎么说&#xff1f; "停车费" 在英语中有多种表达方式&#xff0c;最常见的是&#xff1a; Parking fee: 这是最直接的翻译&#xff0c;用于各种停车场、路边停车等情况。 Parking c15857575#376harge: 与 parking fee 意思相近&#xff0c;但有时更…

第31天:安全开发-JS应用WebPack打包器第三方库JQuery安装使用安全检测

时间轴&#xff1a; 演示案例&#xff1a; 打包器-WebPack-使用&安全 第三方库-JQuery-使用&安全 打包器-WebPack-使用&安全 参考&#xff1a;https://mp.weixin.qq.com/s/J3bpy-SsCnQ1lBov1L98WA Webpack 是一个模块打包器。在 Webpack 中会将前端的所有资源…

Redis使用场景-缓存-缓存雪崩

前言 之前在针对实习面试的博文中讲到Redis在实际开发中的生产问题&#xff0c;其中缓存穿透、击穿、雪崩在面试中问的最频繁&#xff0c;本文加了图解&#xff0c;希望帮助你更直观的了解缓存雪崩&#x1f600; &#xff08;放出之前写的针对实习面试的关于Redis生产问题的博…

【SARL】单智能体强化学习(Single-Agent Reinforcement Learning)《纲要》

&#x1f4e2;本篇文章是博主强化学习&#xff08;RL&#xff09;领域学习时&#xff0c;用于个人学习、研究或者欣赏使用&#xff0c;并基于博主对相关等领域的一些理解而记录的学习摘录和笔记&#xff0c;若有不当和侵权之处&#xff0c;指出后将会立即改正&#xff0c;还望谅…

高通---Camera调试流程及常见问题分析

文章目录 一、概述二、Camera配置的整体流程三、Camera的代码架构图四、Camera数据流的传递五、camera debug FAQ 一、概述 在调试camera过程中&#xff0c;经常会遇到各种状况&#xff0c;本篇文章对camera调试的流程进行梳理。对常见问题的提供一些解题思路。 二、Camera配…

JAVA |日常开发中Servlet详解

JAVA &#xff5c;日常开发中Servlet详解 前言一、Servlet 概述1.1 定义1.2 历史背景 二、Servlet 的生命周期2.1 加载和实例化2.2 初始化&#xff08;init 方法&#xff09;2.3 服务&#xff08;service 方法&#xff09;2.4 销毁&#xff08;destroy 方法&#xff09; 三、Se…

网络(TCP)

目录 TCP socket API 详解 套接字有哪些类型&#xff1f;socket有哪些类型&#xff1f; 图解TCP四次握手断开连接 图解TCP数据报结构以及三次握手&#xff08;非常详细&#xff09; socket缓冲区以及阻塞模式详解 再谈UDP和TCP bind(): 我们的程序中对myaddr参数是这样…

JavaScript 键盘控制移动

如果你想通过 JavaScript 实现键盘控制对象&#xff08;比如一个方块&#xff09;的移动&#xff0c;下面是一个简单的示例&#xff0c;展示如何监听键盘事件并根据按下的键来移动一个元素。 HTML 和 CSS&#xff1a; <!DOCTYPE html> <html lang"en">…

图解SSL/TLS 建立加密通道的过程

众所周知&#xff0c;HTTPS 是 HTTP 安全版&#xff0c;HTTP 的数据以明文形式传输&#xff0c;而 HTTPS 使用 SSL/TLS 协议对数据进行加密&#xff0c;确保数据在传输过程中的安全。 那么&#xff0c;HTTPS 是如何做到数据加密的呢&#xff1f;这就需要了解 SSL/TLS 协议了。 …

自动化立体仓库项目任务调度系统中任务流程可视化实现

在运维自动化平台中,任务系统无疑是最核心的组成部分之一。它承担着所有打包编译、项目上线、日常维护等运维任务的执行。通过任务系统,我们能够灵活地构建满足不同需求的自定义任务流。早期的任务流后端采用了类似列表的存储结构,根据任务流内子任务的排序依次执行,尽管通…

【算法】【优选算法】位运算(下)

目录 一、&#xff1a;⾯试题 01.01.判定字符是否唯⼀1.1 位图1.2 hash思路1.3 暴力枚举 二、268.丢失的数字2.1 位运算&#xff0c;异或2.2 数学求和 三、371.两整数之和四、137.只出现⼀次的数字 II五、⾯试题 17.19.消失的两个数字 一、&#xff1a;⾯试题 01.01.判定字符是…

Java基础之GUI:探索图形化界面编程的魅力

一、引言 Java 的图形用户界面&#xff08;GUI&#xff09;编程为开发者提供了丰富的工具和组件&#xff0c;使得创建直观、交互性强的应用程序变得更加容易。本文将深入介绍 Java 基础中的 GUI&#xff0c;包括其概念、组件、布局管理器以及事件处理等方面的知识。 Java 的图…

极兔速递开放平台快递物流查询API对接流程

目录 极兔速递开放平台快递物流查询API对接流程API简介物流查询API 对接流程1. 注册用户2. 申请成为开发者3. 企业认证4. 联调测试5. 发布上线 签名机制详解1. 提交方式2. 签名规则3. 字段类型与解析约定 物流轨迹服务极兔快递单号查询的其他方案总结 极兔速递开放平台快递物流…

【10】MySQL中的加密功能:如何使用MD5加密算法进行数据加密

文章目录 1. MySQL加密功能概述2. MD5加密算法3. 在MySQL中使用MD5加密4. 使用更安全的加密方法总结 在现代的数据库应用中&#xff0c;数据的安全性和隐私性变得尤为重要。无论是存储用户的个人信息&#xff0c;还是保护敏感的业务数据&#xff0c;确保这些数据不会被未授权访…

【Java-数据结构篇】Java 中栈和队列:构建程序逻辑的关键数据结构基石

我的个人主页 我的专栏&#xff1a;Java-数据结构&#xff0c;希望能帮助到大家&#xff01;&#xff01;&#xff01;点赞❤ 收藏❤ 一、引言 1. 栈与队列在编程中的角色定位 栈和队列作为两种基本的数据结构&#xff0c;在众多编程场景中都有着独特的地位。它们为数据的有序…

相交的链表

力扣链接:160. 相交链表 - 力扣&#xff08;LeetCode&#xff09; 给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据…

SpringBoot两天

SpringBoot讲义 什么是SpringBoot&#xff1f; Spring Boot是由Pivotal团队提供的全新框架&#xff0c;其设计目的是用来简化新Spring应用的初始搭建以及开发过程。该框架使用了特定的方式来进行配置&#xff0c;从而使开发人员不再需要定义样板化的配置。通过这种方式&#xf…

FilterListenerAjax

今日目标: 能够使用 Filter 完成登陆状态校验功能能够使用 axios 发送 ajax 请求熟悉 json 格式,并能使用 Fastjson 完成 java 对象和 json 串的相互转换使用 axios + json 完成综合案例1,Filter 1.1 Filter概述 Filter 表示过滤器,是 JavaWeb 三大组件(Servlet、Filter、…

elasticsearch-如何给文档新增/更新的字段

文章目录 前言elasticsearch-如何给文档新增/更新的字段1. 如何给某些文档新增/更新的字段2. 给所有文档添加/更新一个新的字段3. 测试 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#xff0c;写作不易啊^ _ ^。   而且…