Redis 基础、Redis 应用

Redis 基础

什么是 Redis?

Redis (REmote DIctionary Server)是一个基于 C 语言开发的开源 NoSQL 数据库(BSD 许可)。与传统数据库不同的是,Redis 的数据是保存在内存中的(内存数据库,支持持久化),因此读写速度非常快,被广泛应用于分布式缓存方向。并且,Redis 存储的是 KV 键值对数据。

为了满足不同的业务场景,Redis 内置了多种数据类型实现(比如 String、Hash、Sorted Set、Bitmap、HyperLogLog、GEO)。并且,Redis 还支持事务、持久化、Lua 脚本、发布订阅模型、多种开箱即用的集群方案(Redis Sentinel、Redis Cluster)。

Redis 没有外部依赖,Linux 和 OS X 是 Redis 开发和测试最多的两个操作系统,官方推荐生产环境使用 Linux 部署 Redis。

个人学习的话,你可以自己本机安装 Redis 或者通过 Redis 官网提供的在线 Redis 环境(少部分命令无法使用)来实际体验 Redis。

全世界有非常多的网站使用到了 Redis ,techstacks.io 专门维护了一个使用 Redis 的热门站点列表 ,感兴趣的话可以看看。

Redis 为什么这么快?

Redis 内部做了非常多的性能优化,比较重要的有下面 3 点:

  1. Redis 基于内存,内存的访问速度比磁盘快很多;
  2. Redis 基于 Reactor 模式设计开发了一套高效的事件处理模型,主要是单线程事件循环和 IO 多路复用(Redis 线程模式后面会详细介绍到);
  3. Redis 内置了多种优化过后的数据类型/结构实现,性能非常高。
  4. Redis 通信协议实现简单且解析高效。

下面这张图片总结的挺不错的,分享一下,出自 Why is Redis so fast? 。

那既然都这么快了,为什么不直接用 Redis 当主数据库呢?主要是因为内存成本太高且 Redis 提供的数据持久化仍然有数据丢失的风险。

除了 Redis,你还知道其他分布式缓存方案吗?

如果面试中被问到这个问题的话,面试官主要想看看:

  1. 你在选择 Redis 作为分布式缓存方案时,是否是经过严谨的调研和思考,还是只是因为 Redis 是当前的“热门”技术。
  2. 你在分布式缓存方向的技术广度。

如果你了解其他方案,并且能解释为什么最终选择了 Redis(更进一步!),这会对你面试表现加分不少!

下面简单聊聊常见的分布式缓存技术选型。

分布式缓存的话,比较老牌同时也是使用的比较多的还是 MemcachedRedis。不过,现在基本没有看过还有项目使用 Memcached 来做缓存,都是直接用 Redis

Memcached 是分布式缓存最开始兴起的那会,比较常用的。后来,随着 Redis 的发展,大家慢慢都转而使用更加强大的 Redis 了。

有一些大厂也开源了类似于 Redis 的分布式高性能 KV 存储数据库,例如,腾讯开源的 Tendis 。Tendis 基于知名开源项目 RocksDB 作为存储引擎 ,100% 兼容 Redis 协议和 Redis4.0 所有数据模型。关于 Redis 和 Tendis 的对比,腾讯官方曾经发过一篇文章:Redis vs Tendis:冷热混合存储版架构揭秘 ,可以简单参考一下。

不过,从 Tendis 这个项目的 Github 提交记录可以看出,Tendis 开源版几乎已经没有被维护更新了,加上其关注度并不高,使用的公司也比较少。因此,不建议你使用 Tendis 来实现分布式缓存。

目前,比较业界认可的 Redis 替代品还是下面这两个开源分布式缓存(都是通过碰瓷 Redis 火的):

  • Dragonfly:一种针对现代应用程序负荷需求而构建的内存数据库,完全兼容 Redis 和 Memcached 的 API,迁移时无需修改任何代码,号称全世界最快的内存数据库。
  • KeyDB: Redis 的一个高性能分支,专注于多线程、内存效率和高吞吐量。

不过,个人还是建议分布式缓存首选 Redis ,毕竟经过这么多年的生考验,生态也这么优秀,资料也很全面!

PS:篇幅问题,我这并没有对上面提到的分布式缓存选型做详细介绍和对比,感兴趣的话,可以自行研究一下。

说一下 Redis 和 Memcached 的区别和共同点

现在公司一般都是用 Redis 来实现缓存,而且 Redis 自身也越来越强大了!不过,了解 Redis 和 Memcached 的区别和共同点,有助于我们在做相应的技术选型的时候,能够做到有理有据!

共同点

  1. 都是基于内存的数据库,一般都用来当做缓存使用。
  2. 都有过期策略。
  3. 两者的性能都非常高。

区别

  1. 数据类型:Redis 支持更丰富的数据类型(支持更复杂的应用场景)。Redis 不仅仅支持简单的 k/v 类型的数据,同时还提供 list,set,zset,hash 等数据结构的存储。Memcached 只支持最简单的 k/v 数据类型。
  2. 数据持久化:Redis 支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用,而 Memcached 把数据全部存在内存之中。也就是说,Redis 有灾难恢复机制而 Memcached 没有。
  3. 集群模式支持:Memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据;但是 Redis 自 3.0 版本起是原生支持集群模式的。
  4. 线程模型:Memcached 是多线程,非阻塞 IO 复用的网络模型;Redis 使用单线程的多路 IO 复用模型。 (Redis 6.0 针对网络数据的读写引入了多线程)
  5. 特性支持:Redis 支持发布订阅模型、Lua 脚本、事务等功能,而 Memcached 不支持。并且,Redis 支持更多的编程语言。
  6. 过期数据删除:Memcached 过期数据的删除策略只用了惰性删除,而 Redis 同时使用了惰性删除与定期删除。

相信看了上面的对比之后,我们已经没有什么理由可以选择使用 Memcached 来作为自己项目的分布式缓存了。

为什么要用 Redis?

1、访问速度更快

传统数据库数据保存在磁盘,而 Redis 基于内存,内存的访问速度比磁盘快很多。引入 Redis 之后,我们可以把一些高频访问的数据放到 Redis 中,这样下次就可以直接从内存中读取,速度可以提升几十倍甚至上百倍。

2、高并发

一般像 MySQL 这类的数据库的 QPS 大概都在 4k 左右(4 核 8g) ,但是使用 Redis 缓存之后很容易达到 5w+,甚至能达到 10w+(就单机 Redis 的情况,Redis 集群的话会更高)。

QPS(Query Per Second):服务器每秒可以执行的查询次数;

由此可见,直接操作缓存能够承受的数据库请求数量是远远大于直接访问数据库的,所以我们可以考虑把数据库中的部分数据转移到缓存中去,这样用户的一部分请求会直接到缓存这里而不用经过数据库。进而,我们也就提高了系统整体的并发。

3、功能全面

Redis 除了可以用作缓存之外,还可以用于分布式锁、限流、消息队列、延时队列等场景,功能强大!

什么是 Redis Module?有什么用?

Redis 从 4.0 版本开始,支持通过 Module 来扩展其功能以满足特殊的需求。这些 Module 以动态链接库(so 文件)的形式被加载到 Redis 中,这是一种非常灵活的动态扩展功能的实现方式,值得借鉴学习!

我们每个人都可以基于 Redis 去定制化开发自己的 Module,比如实现搜索引擎功能、自定义分布式锁和分布式限流。

目前,被 Redis 官方推荐的 Module 有:

  • RediSearch:用于实现搜索引擎的模块。
  • RedisJSON:用于处理 JSON 数据的模块。
  • RedisGraph:用于实现图形数据库的模块。
  • RedisTimeSeries:用于处理时间序列数据的模块。
  • RedisBloom:用于实现布隆过滤器的模块。
  • RedisAI:用于执行深度学习/机器学习模型并管理其数据的模块。
  • RedisCell:用于实现分布式限流的模块。
  • ……

关于 Redis 模块的详细介绍,可以查看官方文档:Redis modules API | Docs。

Redis 应用

Redis 除了做缓存,还能做什么?

  • 分布式锁:通过 Redis 来做分布式锁是一种比较常见的方式。通常情况下,我们都是基于 Redisson 来实现分布式锁。关于 Redis 实现分布式锁的详细介绍,可以看我写的这篇文章:分布式锁详解 。
  • 限流:一般是通过 Redis + Lua 脚本的方式来实现限流。如果不想自己写 Lua 脚本的话,也可以直接利用 Redisson 中的 RRateLimiter 来实现分布式限流,其底层实现就是基于 Lua 代码+令牌桶算法。
  • 消息队列:Redis 自带的 List 数据结构可以作为一个简单的队列使用。Redis 5.0 中增加的 Stream 类型的数据结构更加适合用来做消息队列。它比较类似于 Kafka,有主题和消费组的概念,支持消息持久化以及 ACK 机制。
  • 延时队列:Redisson 内置了延时队列(基于 Sorted Set 实现的)。
  • 分布式 Session :利用 String 或者 Hash 数据类型保存 Session 数据,所有的服务器都可以访问。
  • 复杂业务场景:通过 Redis 以及 Redis 扩展(比如 Redisson)提供的数据结构,我们可以很方便地完成很多复杂的业务场景比如通过 Bitmap 统计活跃用户、通过 Sorted Set 维护排行榜。

Redis 可以做消息队列么?

实际项目中使用 Redis 来做消息队列的非常少,毕竟有更成熟的消息队列中间件可以用。

先说结论:可以是可以,但不建议使用 Redis 来做消息队列。和专业的消息队列相比,还是有很多欠缺的地方。

Redis 2.0 之前,如果想要使用 Redis 来做消息队列的话,只能通过 List 来实现。

通过 RPUSH/LPOP 或者 LPUSH/RPOP即可实现简易版消息队列:

# 生产者生产消息
RPUSH myList msg1 msg2
(integer) 2
RPUSH myList msg3
(integer) 3
# 消费者消费消息
LPOP myList
"msg1"

不过,通过 RPUSH/LPOP 或者 LPUSH/RPOP这样的方式存在性能问题,我们需要不断轮询去调用 RPOPLPOP 来消费消息。当 List 为空时,大部分的轮询的请求都是无效请求,这种方式大量浪费了系统资源。

因此,Redis 还提供了 BLPOPBRPOP 这种阻塞式读取的命令(带 B-Blocking 的都是阻塞式),并且还支持一个超时参数。如果 List 为空,Redis 服务端不会立刻返回结果,它会等待 List 中有新数据后再返回或者是等待最多一个超时时间后返回空。如果将超时时间设置为 0 时,即可无限等待,直到弹出消息

# 超时时间为 10s
# 如果有数据立刻返回,否则最多等待10秒
> BRPOP myList 10
null

List 实现消息队列功能太简单,像消息确认机制等功能还需要我们自己实现,最要命的是没有广播机制,消息也只能被消费一次。

Redis 2.0 引入了发布订阅 (pub/sub) 功能,解决了 List 实现消息队列没有广播机制的问题。

pub/sub 中引入了一个概念叫 channel(频道),发布订阅机制的实现就是基于这个 channel 来做的。

pub/sub 涉及发布者(Publisher)和订阅者(Subscriber,也叫消费者)两个角色:

  • 发布者通过 PUBLISH 投递消息给指定 channel。
  • 订阅者通过SUBSCRIBE订阅它关心的 channel。并且,订阅者可以订阅一个或者多个 channel。

我们这里启动 3 个 Redis 客户端来简单演示一下:

pub/sub 既能单播又能广播,还支持 channel 的简单正则匹配。不过,消息丢失(客户端断开连接或者 Redis 宕机都会导致消息丢失)、消息堆积(发布者发布消息的时候不会管消费者的具体消费能力如何)等问题依然没有一个比较好的解决办法。

为此,Redis 5.0 新增加的一个数据结构 Stream 来做消息队列。Stream 支持:

  • 发布 / 订阅模式
  • 按照消费者组进行消费(借鉴了 Kafka 消费者组的概念)
  • 消息持久化( RDB 和 AOF)
  • ACK 机制(通过确认机制来告知已经成功处理了消息)
  • 阻塞式获取消息

Stream 的结构如下:

 

这是一个有序的消息链表,每个消息都有一个唯一的 ID 和对应的内容。ID 是一个时间戳和序列号的组合,用来保证消息的唯一性和递增性。内容是一个或多个键值对(类似 Hash 基本数据类型),用来存储消息的数据。

这里再对图中涉及到的一些概念,进行简单解释:

  • Consumer Group:消费者组用于组织和管理多个消费者。消费者组本身不处理消息,而是再将消息分发给消费者,由消费者进行真正的消费
  • last_delivered_id:标识消费者组当前消费位置的游标,消费者组中任意一个消费者读取了消息都会使 last_delivered_id 往前移动。
  • pending_ids:记录已经被客户端消费但没有 ack 的消息的 ID。

下面是Stream 用作消息队列时常用的命令:

  • XADD:向流中添加新的消息。
  • XREAD:从流中读取消息。
  • XREADGROUP:从消费组中读取消息。
  • XRANGE:根据消息 ID 范围读取流中的消息。
  • XREVRANGE:与 XRANGE 类似,但以相反顺序返回结果。
  • XDEL:从流中删除消息。
  • XTRIM:修剪流的长度,可以指定修建策略(MAXLEN/MINID)。
  • XLEN:获取流的长度。
  • XGROUP CREATE:创建消费者组。
  • XGROUP DESTROY : 删除消费者组
  • XGROUP DELCONSUMER:从消费者组中删除一个消费者。
  • XGROUP SETID:为消费者组设置新的最后递送消息 ID
  • XACK:确认消费组中的消息已被处理。
  • XPENDING:查询消费组中挂起(未确认)的消息。
  • XCLAIM:将挂起的消息从一个消费者转移到另一个消费者。
  • XINFO:获取流(XINFO STREAM)、消费组(XINFO GROUPS)或消费者(XINFO CONSUMERS)的详细信息。

Stream 使用起来相对要麻烦一些,这里就不演示了。

总的来说,Stream 已经可以满足一个消息队列的基本要求了。不过,Stream 在实际使用中依然会有一些小问题不太好解决比如在 Redis 发生故障恢复后不能保证消息至少被消费一次。

综上,和专业的消息队列相比,使用 Redis 来实现消息队列还是有很多欠缺的地方比如消息丢失和堆积问题不好解决。因此,我们通常建议不要使用 Redis 来做消息队列,你完全可以选择市面上比较成熟的一些消息队列比如 RocketMQ、Kafka。不过,如果你就是想要用 Redis 来做消息队列的话,那我建议你优先考虑 Stream,这是目前相对最优的 Redis 消息队列实现。

相关阅读:Redis 消息队列发展历程 - 阿里开发者 - 2022。

Redis 可以做搜索引擎么?

Redis 是可以实现全文搜索引擎功能的,需要借助 RediSearch ,这是一个基于 Redis 的搜索引擎模块。

RediSearch 支持中文分词、聚合统计、停用词、同义词、拼写检查、标签查询、向量相似度查询、多关键词搜索、分页搜索等功能,算是一个功能比较完善的全文搜索引擎了。

相比较于 Elasticsearch 来说,RediSearch 主要在下面两点上表现更优异一些:

  1. 性能更优秀:依赖 Redis 自身的高性能,基于内存操作(Elasticsearch 基于磁盘)。
  2. 较低内存占用实现快速索引:RediSearch 内部使用压缩的倒排索引,所以可以用较低的内存占用来实现索引的快速构建。

对于小型项目的简单搜索场景来说,使用 RediSearch 来作为搜索引擎还是没有问题的(搭配 RedisJSON 使用)。

对于比较复杂或者数据规模较大的搜索场景还是不太建议使用 RediSearch 来作为搜索引擎,主要是因为下面这些限制和问题:

Elasticsearch 适用于全文搜索、复杂查询、实时数据分析和聚合的场景,而 RediSearch 适用于快速数据存储、缓存和简单查询的场景。

如何基于 Redis 实现延时任务?

  1. 数据量限制:Elasticsearch 可以支持 PB 级别的数据量,可以轻松扩展到多个节点,利用分片机制提高可用性和性能。RedisSearch 是基于 Redis 实现的,其能存储的数据量受限于 Redis 的内存容量,不太适合存储大规模的数据(内存昂贵,扩展能力较差)。
  2. 分布式能力较差:Elasticsearch 是为分布式环境设计的,可以轻松扩展到多个节点。虽然 RedisSearch 支持分布式部署,但在实际应用中可能会面临一些挑战,如数据分片、节点间通信、数据一致性等问题。
  3. 聚合功能较弱:Elasticsearch 提供了丰富的聚合功能,而 RediSearch 的聚合功能相对较弱,只支持简单的聚合操作。
  4. 生态较差:Elasticsearch 可以轻松和常见的一些系统/软件集成比如 Hadoop、Spark、Kibana,而 RedisSearch 则不具备该优势。

类似的问题:

  • 订单在 10 分钟后未支付就失效,如何用 Redis 实现?
  • 红包 24 小时未被查收自动退还,如何用 Redis 实现?

基于 Redis 实现延时任务的功能无非就下面两种方案:

Redis 过期事件监听 Redisson 内置的延时队列

Redis 过期事件监听的存在时效性较差、丢消息、多服务实例下消息重复消费等问题,不被推荐使用。

Redisson 内置的延时队列具备下面这些优势:

  1. 减少了丢消息的可能:DelayedQueue 中的消息会被持久化,即使 Redis 宕机了,根据持久化机制,也只可能丢失一点消息,影响不大。当然了,你也可以使用扫描数据库的方法作为补偿机制。
  2. 消息不存在重复消费问题:每个客户端都是从同一个目标队列中获取任务的,不存在重复消费的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/484517.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue 组件通信全面解析

Vue 组件通信全面解析:方式、原理、优缺点及最佳实践 在 Vue 开发中,组件通信是一个重要的核心问题。随着应用复杂度的增加,如何在组件之间有效传递数据、触发事件,直接影响代码的可维护性和可扩展性。Vue 提供了多种组件通信方式…

Python-链表数据结构学习(1)

一、什么是链表数据? 链表是一种通过指针串联在一起的数据结构,每个节点由2部分组成,一个是数据域,一个是指针域(存放下一个节点的指针)。最后一个节点的指针域指向null(空指针的意思&#xff0…

电脑插入耳机和音响,只显示一个播放设备

1. 控制面板-硬件和声音-Realtek高清音频-扬声器-设备高级设置-播放设备里选择使用前部和后部输出设备同时播放两种不同的音频流 在声音设置中就可以看到耳机播放选项

ISAAC SIM踩坑记录--添加第三方3D场景

ISAAC SIM仿真首先就是要有合适的3D场景,官方提供了一些场景,如果不能满足要求,那就只能自己建。 对于我这种不会3D建模的菜鸟,只能到网上下载了,sketchfab就是一个不错的平台,有不少免费资源可以下载。 …

CentOS 9 配置静态IP

文章目录 1_问题原因2_nmcli 配置静态IP3_使用配置文件固定IP4_重启后存在的问题5_nmcli 补充 1_问题原因 CentOS 7 于 2014年6月发布,基于 RHEL 7,并在 2024年6月30日 结束维护。 CentOS 9 作为目前的最新版本,今天闲来闲来无事下载下来后…

C++趣味编程玩转物联网:基于树莓派Pico控制无源蜂鸣器-实现音符与旋律的结合

无源蜂鸣器是一种多功能的声音输出设备,与有源蜂鸣器相比,它能够通过不同频率的方波生成丰富多样的音调。本项目使用树莓派Pico开发板,通过编程控制无源蜂鸣器播放经典旋律《归来有风》。本文将详细介绍项目实现中的硬件连接、C++代码解析,以及无源蜂鸣器的工作原理。 一、…

【AI模型对比】Kimi与ChatGPT的差距:真实对比它们在六大题型中的全面表现!

文章目录 Moss前沿AI语义理解文学知识数学计算天文学知识物理学知识英语阅读理解详细对比列表总结与建议 Moss前沿AI 【OpenAI】获取OpenAI API Key的多种方式全攻略:从入门到精通,再到详解教程!! 【VScode】VSCode中的智能AI-G…

Runway 技术浅析(六):文本到视频(Text-to-Video)

1. 核心组件与工作原理 1.1 自然语言处理(NLP) 1.1.1 文本解析与语义理解 文本到视频的第一步是将用户输入的自然语言文本解析为机器可理解的语义信息。Runway 使用预训练的 NLP 模型,如 GPT-3 和 BERT,这些模型通过大规模文本数…

【C++】双温度转换与并联电阻计算的编程题分析与优化

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯从华氏温度到摄氏温度的转换题目背景与华氏温度与摄氏温度的转换初始代码与验证通过的解法代码分析特点与优缺点 老师的代码:结合 C 与 C 的风格代码分析与对比…

【采样率、采样定理、同步和异步采样】

内容来源:【数据采集卡的【采样率】【采样定理】【同步采样】【异步采样】的相关说明】 此篇文章仅作笔记分享。 前言 模拟信号需要通过采样、储存、量化、编码这几个步骤转换成数字信号,本篇文章将会对采样进行一个更详细的说明。 采样 采样就是将一…

笔记本电脑usb接口没反应怎么办?原因及解决方法

笔记本电脑的USB接口是我们日常使用中非常频繁的一个功能,无论是数据传输、充电还是外接设备,都离不开它。然而,当USB接口突然没有反应时,这无疑会给我们的工作和学习带来不小的困扰。下面,我们就来探讨一下笔记本USB接…

linux运维之shell编程

Shell 编程在系统运维中及其重要 1. Shell 编程概述 Shell 是一种命令行解释器,能够执行操作系统的命令。Shell 脚本是一个包含一系列 Shell 命令的文件,它可以被执行,以自动化和批量处理任务。常用的 Shell 类型包括 bash、sh、zsh 等。Shel…

怎么自己创建一个网站? 开发语言首选 java,使用CMS网站内容管理系统是不错的选择

怎么自己创建一个网站 推荐使用 Java CMS 网站内容管理系统,根据网站规划的功能模块,创建不同的页面风格; 文章目录 怎么自己创建一个网站一、规划网站1.1确定网站主题和目的1.2规划网站结构和内容 二、注册域名2.1选择域名注册商2.2 查找并…

小米澎湃OS2跟蜂窝网络相关的设置和调试【功能设计】

界面功能 开发者模式下,支持数据和WLAN网络相关的设置,跟数据有关的主要如下: 蜂窝网络调试 > 5G-A 特性中心始终开启移动数据网络(便于WiFi和数据快速切换,在国外北美运营商有些需求中明确定义要开着&#xff09…

八、Python —— 类、异常处理、模块、包的管理、虚拟环境

文章目录 一、类1.1、类的定义1.2、类变量和实例变量1.3、类的继承 二、异常处理三、模块 和 包3.1、模块和包的概念,以及项目的树形结构3.2、模块和包的使用 (from import)方法一:from 模块 import 变量/函数/类方式二:from 模块 import 变量…

【text2sql】低资源场景下Text2SQL方法

SFT使模型能够遵循输入指令并根据预定义模板进行思考和响应。如上图,、 和 是用于通知模型在推理过程中响应角色的角色标签。 后面的内容表示模型需要遵循的指令,而 后面的内容传达了当前用户对模型的需求。 后面的内容代表模型的预期输出,也…

自适应神经网络架构:原理解析与代码示例

个人主页:chian-ocean 文章专栏 自适应神经网络结构:深入探讨与代码实现 1. 引言 随着深度学习的不断发展,传统神经网络模型在处理复杂任务时的局限性逐渐显现。固定的网络结构和参数对于动态变化的环境和多样化的数据往往难以适应&#…

挑战用React封装100个组件【004】

项目地址 https://github.com/hismeyy/react-component-100 组件描述 组件适用于展示图片的地方,提供了small,medium,large三种大小。可以删除图片,也可以全屏预览图片。 样式展示 前置依赖 今天我们的这个挑战需要用用到了…

基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2022a 3.部分核心程序 (完整版代码包含详细中文注释和操作步骤视频&#xff09…

如何使用apache部署若依前后端分离项目

本章教程介绍,如何在apache上部署若依前后端分离项目 一、教程说明 本章教程,不介绍如何启动后端以及安装数据库等步骤,着重介绍apache的反向代理如何配置。 参考此教程,默认你已经完成了若依后端服务的启动步骤。 前端打包命令使用以下命令进行打包之后会生成一个dist目录…