代码随想录Day34 本周小结动态规划,62.不同路径,63. 不同路径 II,343. 整数拆分,96.不同的二叉搜索树。

1.本周小结动态规划

周一

在关于动态规划,你该了解这些! (opens new window)中我们讲解了动态规划的基础知识。

首先讲一下动规和贪心的区别,其实大家不用太强调理论上的区别,做做题,就感受出来了。

然后我们讲了动规的五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

后序我们在讲解动规的题目时候,都离不开这五步!

本周都是简单题目,大家可能会感觉 按照这五部来好麻烦,凭感觉随手一写,直接就过,越到后面越会感觉,凭感觉这个事还是不靠谱的。

最后我们讲了动态规划题目应该如何debug,相信一些录友做动规的题目,一旦报错也是凭感觉来改。

其实只要把dp数组打印出来,哪里有问题一目了然!

如果代码写出来了,一直AC不了,灵魂三问:

  1. 这道题目我举例推导状态转移公式了么?
  2. 我打印dp数组的日志了么?
  3. 打印出来了dp数组和我想的一样么?

周二

这道题目动态规划:斐波那契数 (opens new window)是当之无愧的动规入门题。

简单题,我们就是用来了解方法论的,用动规五部曲走一遍,题目其实已经把递推公式,和dp数组如何初始化都给我们了。

周三

动态规划:爬楼梯 (opens new window)这道题目其实就是斐波那契数列。

但正常思考过程应该是推导完递推公式之后,发现这是斐波那契,而不是上来就知道这是斐波那契。

在这道题目的第三步,确认dp数组如何初始化,其实就可以看出来,对dp[i]定义理解的深度。

dp[0]其实就是一个无意义的存在,不用去初始化dp[0]。

有的题解是把dp[0]初始化为1,然后遍历的时候i从2开始遍历,这样是可以解题的,然后强行解释一波dp[0]应该等于1的含义。

一个严谨的思考过程,应该是初始化dp[1] = 1,dp[2] = 2,然后i从3开始遍历。

这道题目还可以继续深化,就是一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。

一个绝佳的大厂面试题,第一道题就是单纯的爬楼梯,然后看候选人的代码实现,如果把dp[0]的定义成1了,就可以发难了,为什么dp[0]一定要初始化为1,此时可能候选人就要强行给dp[0]应该是1找各种理由。那这就是一个考察点了,对dp[i]的定义理解的不深入。

然后可以继续发难,如果一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。这道题目leetcode上并没有原题,绝对是考察候选人算法能力的绝佳好题。

这一连套问下来,候选人算法能力如何,面试官心里就有数了。

其实大厂面试最喜欢问题的就是这种简单题,然后慢慢变化,在小细节上考察候选人

这道绝佳的面试题我没有用过,如果录友们有面试别人的需求,就把这个套路拿去吧。

我在通过一道面试题目,讲一讲递归算法的时间复杂度! (opens new window)中,以我自己面试别人的真实经历,通过求x的n次方 这么简单的题目,就可以考察候选人对算法性能以及递归的理解深度,录友们可以看看,绝对有收获!

周四

这道题目动态规划:使用最小花费爬楼梯 (opens new window)就是在爬台阶的基础上加了一个花费,

这道题描述也确实有点魔幻。

题目描述为:每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

示例1:

输入:cost = [10, 15, 20] 输出:15

从题目描述可以看出:要不是第一步不需要花费体力,要不就是第最后一步不需要花费体力,我个人理解:题意说的其实是第一步是要支付费用的!。因为是当你爬上一个台阶就要花费对应的体力值!

所以我定义的dp[i]意思是也是第一步是要花费体力的,最后一步不用花费体力了,因为已经支付了。

之后一些录友在留言区说 可以定义dp[i]为:第一步是不花费体力,最后一步是花费体力的。

2.不同路径

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

  • 输入:m = 3, n = 7
  • 输出:28

示例 2:

  • 输入:m = 2, n = 3
  • 输出:3

解释: 从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下
  2. 向右 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向右

示例 3:

  • 输入:m = 7, n = 3
  • 输出:28

示例 4:

  • 输入:m = 3, n = 3
  • 输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 10^9

思路

深搜

这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。

注意题目中说机器人每次只能向下或者向右移动一步,那么其实机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!

如图举例:

62.不同路径

此时问题就可以转化为求二叉树叶子节点的个数

深搜的算法,其实就是要遍历整个二叉树。

这棵树的深度其实就是m+n-1(深度按从1开始计算)。

那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树(其实没有遍历整个满二叉树,只是近似而已)

所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。

动态规划

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

  1. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

  1. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

  1. 举例推导dp数组

如图所示:

62.不同路径1

数论方法

在这个图中,可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

62.不同路径

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

那么答案,如图所示:

62.不同路径2

求组合的时候,要防止两个int相乘溢出! 所以不能把算式的分子都算出来,分母都算出来再做除法。

总结

本文分别给出了深搜,动规,数论三种方法。

深搜当然是超时了,顺便分析了一下使用深搜的时间复杂度,就可以看出为什么超时了。

然后在给出动规的方法,依然是使用动规五部曲,这次我们就要考虑如何正确的初始化了,初始化和遍历顺序其实也很重要!

public class different_paths {public static int uniquePaths(int m, int n) {//接受两个整数参数m和n,分别代表网格的行数和列数,并返回到达右下角的不同路径数量。int[][] dp = new int[m][n];//一个二维数组dp,用于存储到达每个格子的不同路径数量。for (int i = 0; i < m; i++) {//初始化第一列的所有值为1,因为到达第一列的任何格子只有一种方式,即沿着第一列向下移动。dp[i][0] = 1;}for (int i = 0; i < n; i++) {//初始化第一行的所有值为1,因为到达第一行的任何格子只有一种方式,即沿着第一行向右移动。dp[0][i] = 1;}for (int i = 1; i < m; i++) {//计算到达每个格子的不同路径数量。对于每个格子(i, j),到达该格子的路径数量等于到达其上方格子(i-1, j)的路径数量加上到达其左侧格子(i, j-1)的路径数量。for (int j = 1; j < n; j++) {dp[i][j] = dp[i-1][j]+dp[i][j-1];}}return dp[m-1][n-1];//返回到达右下角格子的不同路径数量。}
}
  • 时间复杂度为O(m * n^2)
  • 空间复杂度为O(m * n)

状态压缩

public class different_paths {public int uniquePaths2(int m, int n) {//接受两个整数参数m和n,并返回到达右下角的不同路径数量。int[] dp = new int[n];//一维数组dp,用于存储到达每一行的最后一个格子的不同路径数量。Arrays.fill(dp, 1);//将dp数组的所有元素初始化为1,因为到达第一行的任何格子只有一种方式。for (int i = 1; i < m; i ++) {//计算到达每一行的最后一个格子的不同路径数量。对于每一行i(从第二行开始),到达该行的每个格子j的路径数量等于到达上一行的同一列的格子j-1的路径数量加上到达当前行的前一列的格子j的路径数量。for (int j = 1; j < n; j ++) {dp[j] += dp[j - 1];}}return dp[n - 1];}
}

时间复杂度为O(m * n)

空间复杂度为O(n)

3.不同路径 II

力扣题目链接(opens new window)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

  • 输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
  • 输出:2 解释:
  • 3x3 网格的正中间有一个障碍物。
  • 从左上角到右下角一共有 2 条不同的路径:
    1. 向右 -> 向右 -> 向下 -> 向下
    2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

  • 输入:obstacleGrid = [[0,1],[0,0]]
  • 输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

思路

这道题相对于62.不同路径 (opens new window)就是有了障碍。

第一次接触这种题目的同学可能会有点懵,这有障碍了,应该怎么算呢?

62.不同路径 (opens new window)中我们已经详细分析了没有障碍的情况,有障碍的话,其实就是标记对应的dp table(dp数组)保持初始值(0)就可以了。

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

  1. 确定递推公式

递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。

但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。

  1. dp数组如何初始化

在62.不同路径 (opens new window)不同路径中

因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。

但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

如图:

63.不同路径II

下标(0, j)的初始化情况同理。

for循环的终止条件,一旦遇到obstacleGrid[i][0] == 1的情况就停止dp[i][0]的赋值1的操作,dp[0][j]同理

  1. 确定遍历顺序

从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。

  1. 举例推导dp数组

拿示例1来举例如题:

63.不同路径II1

对应的dp table 如图:

63.不同路径II2

总结

本题是62.不同路径 (opens new window)的障碍版,整体思路大体一致。

但就算是做过62.不同路径,在做本题也会有感觉遇到障碍无从下手。

其实只要考虑到,遇到障碍dp[i][j]保持0就可以了。

也有一些小细节,例如:初始化的部分,很容易忽略了障碍之后应该都是0的情况。

public class different_pathsII {public int uniquePathsWithObstacles1(int[][] obstacleGrid) {//接受一个二维整数数组obstacleGrid作为参数,表示网格,其中1表示障碍物,0表示空地。该方法返回从左上角到右下角的不同路径数量。int m = obstacleGrid.length;//获取网格的行数m和列数n。int n = obstacleGrid[0].length;int[][] dp = new int[m][n];//用于存储到达每个格子的不同路径数量。if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {//如果目标格子(右下角)或起点(左上角)有障碍物,则返回0,因为无法到达目的地。return 0;}for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) {//初始化第一列的值。如果某行的第一列没有障碍物,则到达该列的路径数量为1。dp[i][0] = 1;}for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {//初始化第一行的值。如果某列的第一行没有障碍物,则到达该行的路径数量为1。dp[0][j] = 1;}for (int i = 1; i < m; i++) {//计算从第二行第二列开始的所有格子的路径数量。for (int j = 1; j < n; j++) {dp[i][j] = (obstacleGrid[i][j] == 0) ? dp[i - 1][j] + dp[i][j - 1] : 0;//如果该格子没有障碍物,则到达该格子的路径数量等于到达其上方格子(i-1, j)的路径数量加上到达其左侧格子(i, j-1)的路径数量。如果该格子有障碍物,则到达该格子的路径数量为0。}}return dp[m - 1][n - 1];}}

时间复杂度为O(m * n)

空间复杂度为O(m * n)

空间优化版本

public class different_pathsII {public int uniquePathsWithObstacles2(int[][] obstacleGrid) {//接受一个二维整数数组obstacleGrid作为参数,表示网格,其中1表示障碍物,0表示空地。该方法返回从左上角到右下角的不同路径数量。int m = obstacleGrid.length;//获取网格的行数m和列数n。int n = obstacleGrid[0].length;int[] dp = new int[n];//一维数组dp,用于存储到达每一列的最后一个格子的不同路径数量。for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) {//初始化第一行的值。如果第一行的某个格子没有障碍物,则到达该格子的路径数量为1。dp[j] = 1;}for (int i = 1; i < m; i++) {//外层循环遍历网格的每一行,从第二行开始。for (int j = 0; j < n; j++) {//内层循环遍历当前行的每个格子。if (obstacleGrid[i][j] == 1) {//如果当前格子有障碍物,则到达该格子的路径数量为0。dp[j] = 0;} else if (j != 0) {//如果当前格子没有障碍物,并且不是当前列的第一个格子(即j != 0),则到达该格子的路径数量等于到达当前列前一个格子的路径数量(即dp[j - 1])。dp[j] += dp[j - 1];}}}return dp[n - 1];}
}

时间复杂度为O(m * n)

空间复杂度为O(n)

4.整数拆分

力扣题目链接(opens new window)

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

  • 输入: 2
  • 输出: 1
  • 解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

  • 输入: 10
  • 输出: 36
  • 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
  • 说明: 你可以假设 n 不小于 2 且不大于 58。

思路

动态规划

动规五部曲,分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!

  1. 确定递推公式

可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

那有同学问了,j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

  1. dp的初始化

不少同学应该疑惑,dp[0] dp[1]应该初始化多少呢?

有的题解里会给出dp[0] = 1,dp[1] = 1的初始化,但解释比较牵强,主要还是因为这么初始化可以把题目过了。

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。

拆分0和拆分1的最大乘积是多少?

这是无解的。

这里我只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1,这个没有任何异议!

  1. 确定遍历顺序

确定遍历顺序,先来看看递归公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

至于 “拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的” 这个我就不去做数学证明了,感兴趣的同学,可以自己证明。

  1. 举例推导dp数组

举例当n为10 的时候,dp数组里的数值,如下:

343.整数拆分

贪心

本题也可以用贪心,每次拆成n个3,如果剩下是4,则保留4,然后相乘,但是这个结论需要数学证明其合理性!

动态规划

public class Integer_Partition {public int integerBreak1(int n) {//接受一个整数n作为参数,并返回将其拆分后能得到的最大乘积。int[] dp = new int[n+1];//一个长度为n+1的整型数组dp,用于存储从1到n每个整数拆分后能得到的最大乘积。dp[2] = 1;//初始化dp[2]为1,因为2是最小的可以拆分的数,且2只能拆分为1+1,乘积为1。for(int i = 3; i <= n; i++) {//外层循环从3开始,因为2已经在上一步初始化了。for(int j = 1; j <= i-j; j++) {//内层循环遍历所有可能的拆分数j,使得j和i-j的和为i。dp[i] = Math.max(dp[i], Math.max(j*(i-j), j*dp[i-j]));//对于每个i,尝试所有可能的拆分方式,计算j*(i-j)和j*dp[i-j],取两者中较大的值,更新dp[i]。j*(i-j)表示将i拆分为j和i-j的乘积,j*dp[i-j]表示将i拆分为j和剩余部分(i-j)的最大乘积。}}return dp[n];}}

时间复杂度:O(n^2)

空间复杂度:O(n)

贪心

public class Integer_Partition {public int integerBreak2(int n) {if(n == 2) return 1;//如果n为2,直接返回1,因为2不能拆分为更小的正整数。if(n == 3) return 2;//如果n为3,直接返回2,因为3的最佳拆分是1+1+1,乘积为1,但3本身作为单个整数的乘积为3。int result = 1;while(n > 4) {//每次循环减少n的值3,并更新result为原来的3倍。这是因为对于大于4的数,每次拆分出一个3,都能保证乘积最大。n-=3;result *=3;}return result*n;//循环结束后,n的值将小于或等于4。此时,根据n的值(可能是2、3或4),直接与result相乘得到最终的最大乘积。}
}

时间复杂度:O(n)

空间复杂度:O(1)

5.不同的二叉搜索树

力扣题目链接(opens new window)

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

思路

这道题目描述很简短,但估计大部分同学看完都是懵懵的状态,这得怎么统计呢?

关于什么是二叉搜索树,我们之前在讲解二叉树专题的时候已经详细讲解过了,也可以看看这篇二叉树:二叉搜索树登场! (opens new window)再回顾一波。

了解了二叉搜索树之后,我们应该先举几个例子,画画图,看看有没有什么规律,如图:

96.不同的二叉搜索树

n为1的时候有一棵树,n为2有两棵树,这个是很直观的。

96.不同的二叉搜索树1

来看看n为3的时候,有哪几种情况。

当1为头结点的时候,其右子树有两个节点,看这两个节点的布局,是不是和 n 为2的时候两棵树的布局是一样的啊!

(可能有同学问了,这布局不一样啊,节点数值都不一样。别忘了我们就是求不同树的数量,并不用把搜索树都列出来,所以不用关心其具体数值的差异)

当3为头结点的时候,其左子树有两个节点,看这两个节点的布局,是不是和n为2的时候两棵树的布局也是一样的啊!

当2为头结点的时候,其左右子树都只有一个节点,布局是不是和n为1的时候只有一棵树的布局也是一样的啊!

发现到这里,其实我们就找到了重叠子问题了,其实也就是发现可以通过dp[1] 和 dp[2] 来推导出来dp[3]的某种方式。

思考到这里,这道题目就有眉目了。

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

有2个元素的搜索树数量就是dp[2]。

有1个元素的搜索树数量就是dp[1]。

有0个元素的搜索树数量就是dp[0]。

所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]

如图所示:

96.不同的二叉搜索树2

此时我们已经找到递推关系了,那么可以用动规五部曲再系统分析一遍。

  1. 确定dp数组(dp table)以及下标的含义

dp[i] : 1到i为节点组成的二叉搜索树的个数为dp[i]

也可以理解是i个不同元素节点组成的二叉搜索树的个数为dp[i] ,都是一样的。

以下分析如果想不清楚,就来回想一下dp[i]的定义

  1. 确定递推公式

在上面的分析中,其实已经看出其递推关系, dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

j相当于是头结点的元素,从1遍历到i为止。

所以递推公式:dp[i] += dp[j - 1] * dp[i - j]; ,j-1 为j为头结点左子树节点数量,i-j 为以j为头结点右子树节点数量

  1. dp数组如何初始化

初始化,只需要初始化dp[0]就可以了,推导的基础,都是dp[0]。

那么dp[0]应该是多少呢?

从定义上来讲,空节点也是一棵二叉树,也是一棵二叉搜索树,这是可以说得通的。

从递归公式上来讲,dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量] 中以j为头结点左子树节点数量为0,也需要dp[以j为头结点左子树节点数量] = 1, 否则乘法的结果就都变成0了。

所以初始化dp[0] = 1

  1. 确定遍历顺序

首先一定是遍历节点数,从递归公式:dp[i] += dp[j - 1] * dp[i - j]可以看出,节点数为i的状态是依靠 i之前节点数的状态。

那么遍历i里面每一个数作为头结点的状态,用j来遍历。

  1. 举例推导dp数组

n为5时候的dp数组状态如图:

96.不同的二叉搜索树3

当然如果自己画图举例的话,基本举例到n为3就可以了,n为4的时候,画图已经比较麻烦了。

public class Different_Binary_Search_Trees {public int numTrees(int n) {//接受一个整数n作为参数,表示节点的数量,并返回可以形成的不同二叉搜索树的数量。int[] dp = new int[n + 1];//一个长度为n + 1的整型数组dp,用于存储从0到n个节点时不同二叉搜索树的数量。dp[0] = 1;//初始化dp[0]和dp[1]。对于0个节点,有一种空树的情况,对于1个节点,有一种单节点树的情况。dp[1] = 1;for (int i = 2; i <= n; i++) {for (int j = 1; j <= i; j++) {//内层循环遍历从1到i的所有可能的根节点。dp[i] += dp[j - 1] * dp[i - j];//对于每个i,计算以j为根节点时的不同二叉搜索树的数量,并将结果累加到dp[i]。这里dp[j - 1]表示左子树的不同二叉搜索树的数量(j - 1个节点),dp[i - j]表示右子树的不同二叉搜索树的数量(i - j个节点)。}}return dp[n];}
}

时间复杂度:O(n^2)

空间复杂度:O(n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/485622.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue中使用socket.io统计在线用户

目录 一、引入相关模块 二、store/modules 中封装socketio 三、后端代码(nodejs) 一、引入相关模块 main.js 中参考以下代码 ,另外socketio的使用在查阅其它相关文章时有出入,还是尽量以官方文档为准 import VueSocketIO from vue-socket.io import SocketIO from socket.io-…

Agent Network Protocol技术白皮书:一个对标Anthropic MCP的协议

Agent Network Protocol技术白皮书&#xff1a;一个对标Anthropic MCP的协议 Anthropic MCP让人们看到智能体通过API或协议与外部数据对接的巨大潜力。我们在几个月之前就发布了Agent Network Protocol技术白皮书&#xff0c;一个和MCP类似的协议&#xff0c;致力于解决智能体…

dbeaver安装

数据库常用的管理工具就是navicat&#xff0c;页面简洁大方&#xff0c;且易上手&#xff0c;唯一不好的就是要收费&#xff0c;个人使用的话可以用dbeaver&#xff0c;一款开源的数据库管理工具。 下载地址&#xff1a;https://dbeaver.io/download/ 直接下载这个windows(inst…

每日计划-1206

1. 完成 300. 最长上升子序列 有两种办法&#xff0c;一是使用状态规划&#xff0c;二是用二分法&#xff0c;递推。利用桶排序思想&#xff0c;出自最长递增子序列&#xff08;nlogn 二分法、DAG 模型 和 延伸问题&#xff09; | 春水煎茶 代码实现&#xff1a; class Soluti…

PHP 表单处理

在php接口中创建一个html&#xff0c;并添加一个提交按钮&#xff0c;当填写完文本框里面的内容后&#xff0c;点击提交会自动使用post方法传过去我们写的shop.php接口中。 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8&q…

Altium Designer学习笔记 29 PCB布线_信号线

基于Altium Designer 23学习版&#xff0c;四层板智能小车PCB 更多AD学习笔记&#xff1a;Altium Designer学习笔记 1-5 工程创建_元件库创建Altium Designer学习笔记 6-10 异性元件库创建_原理图绘制Altium Designer学习笔记 11-15 原理图的封装 编译 检查 _PCB封装库的创建Al…

华为网络设备配置文件备份与恢复(上传、下载、导出,导入)

在日常运维工作中&#xff0c;会经常存在网络割接的情况&#xff0c;为了保证网络割接失败时能重新回退至原有配置&#xff0c;从而不影响原有的办公环境&#xff0c;在网络割接前的备份工作就非常有必要了。 备份方式&#xff1a;FTP 备份技术&#xff1a;PC客户端<---&g…

STM32编码器接口及编码器测速模板代码

编码器是什么&#xff1f; 编码器是一种将角位移或者角速度转换成一连串电数字脉冲的旋转式传感 器&#xff0c;我们可以通过编码器测量到底位移或者速度信息。编码器从输出数据类型上 分&#xff0c;可以分为增量式编码器和绝对式编码器。 从编码器检测原理上来分&#xff0…

Flume——进阶(agent特性+三种结构:串联,多路复用,聚合)

目录 agent特性ChannelSelector描述&#xff1a; SinkProcessor描述&#xff1a; 串联架构结构图解定义与描述配置示例Flume1&#xff08;监测端node1&#xff09;Flume3&#xff08;接收端node3&#xff09;启动方式 复制和多路复用结构图解定义描述配置示例node1node2node3启…

【python自动化一】pytest的基础使用

1.pytest简述 pytest‌ 是一个功能强大且灵活的Python测试框架&#xff0c;其主要是用于流程控制&#xff0c;具体用于UI还是接口自动化根据个人需要而定。且其具有丰富插件&#xff0c;使用时较为方便。咱们具体看下方的内容&#xff0c;本文按照使用场景展开&#xff0c;不完…

️ 在 Windows WSL 上部署 Ollama 和大语言模型的完整指南20241206

&#x1f6e0;️ 在 Windows WSL 上部署 Ollama 和大语言模型的完整指南 &#x1f4dd; 引言 随着大语言模型&#xff08;LLM&#xff09;和人工智能的飞速发展&#xff0c;越来越多的开发者尝试在本地环境中部署大模型进行实验。然而&#xff0c;由于资源需求高、网络限制多…

buuctf:rar

根据题目所示&#xff0c;直接进行爆破 爆破后密码是8795,解压后得到flag flag{1773c5da790bd3caff38e3decd180eb7}

李飞飞空间智能来了:AI生成可探索交互的3D世界,颠覆游戏电影VR行业

目录 前言图生世界摄影效果景深效果滑动变焦 3D效果交互效果动画效果 走进大师的艺术工作流总结 前言 12月3日&#xff0c;有AI“教母”之称的李飞飞发布了空间智能的一个项目&#xff0c;一经发布就立刻引爆了外网。这个项目是仅仅通过一张图片&#xff0c;AI就可以快速的构建…

dockerfile部署前后端(vue+springboot)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言0.环境说明和准备1.前端多环境打包1.1前端多环境设置1.2打包 2.后端项目多环境配置以及打包2.1后端多环境配置2.2项目打包 3.文件上传4.后端镜像制作4.1dockerf…

Numpy基础练习

import numpy as np 1.创建一个长度为10的一维全为0的ndarray对象,然后让第5个元素等于1 n np.zeros(10,dtypenp.int32) n[4] 12.创建一个元素从10到49的ndarray对象 n np.arrange(10,50)3.将第2题的所有元素位置反转 n[::-1]使用np.random.random创建一个10*10的ndarray对象…

MongoDB分片集群搭建及扩容

分片集群搭建及扩容 整体架构 环境准备 3台Linux虚拟机&#xff0c;准备MongoDB环境&#xff0c;配置环境变量。一定要版本一致&#xff08;重点&#xff09;&#xff0c;当前使用 version4.4.9 配置域名解析 在3台虚拟机上执行以下命令&#xff0c;注意替换实际 IP 地址 e…

Java项目实战II基于微信小程序的亿家旺生鲜云订单零售系统的设计与实现(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、核心代码 五、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 随着移动互联网技术的不断…

数据结构与算法-03链表-03

递归与迭代 由一个问题引出 假设我们要计算 一个正整数的阶乘, N! 。 从数学上看 1&#xff01; 1 2&#xff01; 2 x 1 3! 3 x 2 x 1 4! 4 x 3 x 2 x 1 5! 5 x 4 x 3 x 2 x 1 : n! n x (n-1) x (n-2) x (n-3) x ... 1我们推出一般公式 f(1) 1 f(n) n * f(n-1…

Unity 设计模式-观察者模式(Observer Pattern)详解

观察者模式 观察者模式&#xff08;Observer Pattern&#xff09;是一种行为型设计模式&#xff0c;它定义了对象之间的一对多依赖关系。当一个对象的状态发生变化时&#xff0c;它的所有依赖者&#xff08;观察者&#xff09;都会收到通知并自动更新。这种模式用于事件处理系…

第四篇:k8s 理解Service工作原理

什么是service&#xff1f; Service是将运行在一组 Pods 上的应用程序公开为网络服务的抽象方法。 简单来说K8s提供了service对象来访问pod。我们在《k8s网络模型与集群通信》中也说过k8s集群中的每一个Pod&#xff08;最小调度单位&#xff09;都有自己的IP地址&#xff0c;都…