人工智能领域单词:英文解释

目录

  • 1、前言
  • 2、单词组1:15个
  • 3、单词组2:15个
  • 4、单词组3:15个
  • 5、单词组4:15个
  • 6、单词组5:15个

1、前言

亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:fn_kobe@163.com

2、单词组1:15个

1、人工智能(Artificial Intelligence, AI): a technology that simulates human intelligence, including machine learning, natural language processing, computer vision, and other fields.

2、机器学习 (Machine Learning, ML): a technology that enables computers to learn automatically and gradually improve their performance, including supervised learning, unsupervised learning, and reinforcement learning.

3、深度学习(Deep Learning, DL): a type of machine learning that uses neural networks with multiple layers to learn complex patterns from data.

4、自然语言处理 (Natural Language Processing, NLP): a technology that enables computers to understand and generate human language.

5、计算机视觉 (Computer Vision, CV): a technology that enables computers to interpret and understand visual data from the world.

6、神经网络 (Neural Network, NN): a type of machine learning algorithm that is modeled after the structure and function of the human brain.

7、人类智能 (Human Intelligence, HI): the intellectual capacity and abilities of humans, such as perception, learning, reasoning, and problem-solving.

8、监督学习 (Supervised Learning): a type of machine learning in which the algorithm learns from labeled examples.

9、无监督学习 (Unsupervised Learning): a type of machine learning in which the algorithm learns from unlabeled examples.

10、强化学习 (Reinforcement Learning): a type of machine learning in which the algorithm learns from feedback in the form of rewards or punishments.

11、神经元(Neuron): a fundamental building block of neural networks, which receives inputs and produces outputs based on an activation function.

12、感知器 (Perceptron): a type of neural network that consists of a single layer of neurons and is used for simple classification tasks.

13、卷积神经网络(Convolutional Neural Network, CNN): a type of neural network that is used for image recognition and processing.

14、递归神经网络 (Recurrent Neural Network, RNN): a type of neural network that is used for sequence processing and prediction.

15、遗传算法(Genetic Algorithm, GA): a method of optimization inspired by the process of natural selection, which uses principles of mutation, crossover, and selection to evolve solutions to a problem.

3、单词组2:15个

16、自动编码器 (Autoencoder, AE): a type of neural network that is used for unsupervised learning by training the network to reconstruct its input.

17、强人工智能 (Strong Artificial Intelligence): an hypothetical form of AI that would have general intelligence similar to that of a human being.

18、弱人工智能 (Weak Artificial Intelligence): a form of AI that is designed to perform specific tasks, such as speech recognition or image classification, but does not have general intelligence.

19、数据挖掘 (Data Mining): the process of analyzing large datasets to discover patterns and insights.

20、数据预处理 (Data Preprocessing): the process of cleaning, transforming, and preparing data for analysis and machine learning.

21、特征工程 (Feature Engineering): the process of selecting and extracting relevant features from raw data to improve the performance of machine learning algorithms.

22、机器视觉 (Machine Vision): a subset of computer vision that focuses on visual perception by machines, such as object detection and recognition.

23、自动化 (Automation): the use of technology and machines to perform tasks that were previously done by humans.

24、增强现实 (Augmented Reality, AR): a technology that overlays digital information onto the real world, typically through a mobile device or smart glasses.

25、虚拟现实 (Virtual Reality, VR): a technology that creates a simulated environment that can be experienced through a VR headset or other device.

26、语音识别 (Speech Recognition): a technology that enables computers to understand and transcribe human speech.

27、机器翻译 (Machine Translation): a technology that enables computers to translate text from one language to another.

28、强化学习 (Reinforcement Learning): a type of machine learning in which the algorithm learns from feedback in the form of rewards or punishments.

29、深度强化学习 (Deep Reinforcement Learning): a type of reinforcement learning that uses deep neural networks to learn complex policies and decision-making strategies.

30、知识图谱 (Knowledge Graph): a knowledge base that stores structured information about entities, relationships, and attributes in a graph database.
语言模型 (Language Model): a type of model that is used to predict the probability of a sequence of words in a language, typically used in natural language processing (NLP).

4、单词组3:15个

31、语言模型 (Language Model): a type of model that is used to predict the probability of a sequence of words in a language, typically used in natural language processing (NLP).

32、文本分类 (Text Classification): a type of NLP task that involves categorizing text into one or more predefined categories, such as spam detection or sentiment analysis.

33、图像分类 (Image Classification): a type of computer vision task that involves assigning a label or category to an image, such as identifying objects or scenes.

34、目标检测 (Object Detection): a type of computer vision task that involves identifying and localizing objects within an image or video.

35、图像分割 (Image Segmentation): a type of computer vision task that involves partitioning an image into multiple segments or regions based on their visual properties.

36、生成对抗网络 (Generative Adversarial Networks, GANs): a type of neural network architecture that consists of two networks (a generator and a discriminator) that compete with each other to generate realistic synthetic data.

37、受限玻尔兹曼机 (Restricted Boltzmann Machine, RBM): a type of neural network that is used for unsupervised learning, typically used for feature learning and data compression.

38、线性回归 (Linear Regression): a type of supervised learning algorithm that is used to model the relationship between a dependent variable and one or more independent variables.

39、逻辑回归 (Logistic Regression): a type of supervised learning algorithm that is used for binary classification problems, where the output is a probability of belonging to one of two classes.

40、支持向量机 (Support Vector Machine, SVM): a type of supervised learning algorithm that is used for classification and regression analysis, typically used for binary classification problems and data with clear margins between classes.

41、决策树 (Decision Tree): a type of supervised learning algorithm that is used for classification and regression analysis, where the model creates a tree-like structure to represent decisions and their possible consequences.

42、随机森林 (Random Forest): a type of ensemble learning method that uses multiple decision trees to improve the accuracy and robustness of the model.

43、梯度下降 (Gradient Descent): an optimization algorithm that is used to minimize the error or loss function in a model by iteratively adjusting the parameters in the direction of steepest descent.

44、反向传播 (Backpropagation): a common method used to train neural networks by propagating the error or loss back through the network and adjusting the weights based on the calculated gradients.

45、批量归一化 (Batch Normalization): a technique used in deep learning to normalize the inputs to a layer to improve the stability and speed of the training process.

5、单词组4:15个

46、卷积神经网络 (Convolutional Neural Network, CNN): a type of neural network architecture that is typically used for image and video processing, where the model uses convolutional layers to extract features from the input data.

47、循环神经网络 (Recurrent Neural Network, RNN): a type of neural network architecture that is used for sequential data processing, such as natural language processing or time series analysis, where the model uses recurrent connections to process the input data over time.

48、强化学习 (Reinforcement Learning): a type of machine learning that involves an agent learning to make decisions in an environment by receiving feedback in the form of rewards or punishments.

49、迁移学习 (Transfer Learning): a machine learning technique that involves transferring knowledge or information from one model or domain to another, typically used to improve the performance of a model with limited data.

50、多任务学习 (Multi-Task Learning): a machine learning technique that involves training a model to perform multiple tasks simultaneously, typically used to improve the generalization and efficiency of the model.

51、自编码器 (Autoencoder): a type of neural network that is used for unsupervised learning, where the model is trained to reconstruct the input data by learning a compressed representation of the data.

52、奇异值分解 (Singular Value Decomposition, SVD): a matrix factorization technique used to reduce the dimensionality of data, commonly used in recommender systems.

53、深度信念网络 (Deep Belief Network, DBN): a type of neural network architecture that is used for unsupervised learning, where the model is trained to learn a hierarchy of representations of the input data.

54、支持向量机 (Support Vector Machine, SVM): a type of supervised learning algorithm used for classification and regression analysis, where the model finds the optimal hyperplane that separates the data into different classes.

55、朴素贝叶斯 (Naive Bayes): a type of probabilistic algorithm used for classification, where the model makes predictions by calculating the probability of each class given the input data.

56、集成学习 (Ensemble Learning): a machine learning technique that involves combining multiple models to improve the performance and stability of the model.

57、神经样条回归 (Neural spline regression): a type of regression algorithm that uses neural networks to model the relationship between variables.

58、非负矩阵分解 (Non-negative Matrix Factorization, NMF): a matrix factorization technique used for feature extraction and dimensionality reduction, where the model learns non-negative weights that represent the features of the input data.

59、分层聚类 (Hierarchical Clustering): a type of unsupervised learning algorithm used for clustering analysis, where the model creates a hierarchy of clusters based on the similarity of the data.

60、数据清洗 (Data Cleaning): the process of detecting and correcting or removing errors, inconsistencies, and inaccuracies in data to improve the quality and reliability of the data.

6、单词组5:15个

61、数据预处理 (Data Preprocessing): the process of preparing data for analysis, including cleaning, transforming, and organizing data to make it suitable for machine learning algorithms.

62、数据增强 (Data Augmentation): a technique used in machine learning to increase the amount of training data by generating new data from the existing data, for example, by rotating, flipping, or cropping images.

63、数据采集 (Data Collection): the process of collecting data from various sources, including web scraping, surveys, sensors, and other data sources.

64、数据挖掘 (Data Mining): the process of analyzing large datasets to discover patterns, relationships, and insights that can be used for decision-making.

65、强化学习 (Reinforcement Learning): a type of machine learning that involves training an agent to interact with an environment by learning from feedback in the form of rewards or punishments.

66、迁移学习 (Transfer Learning): a machine learning technique that involves leveraging knowledge from one task to improve performance on another related task.

67、相似度度量 (Similarity Metrics): mathematical methods used to quantify the similarity or distance between two objects or datasets, commonly used in clustering and classification analysis.

68、网格搜索 (Grid Search): a technique used to optimize the hyperparameters of a machine learning model by exhaustively searching through a predefined grid of hyperparameters.

69、模型评估 (Model Evaluation): the process of assessing the performance of a machine learning model, commonly done using metrics such as accuracy, precision, recall, and F1 score.

70、神经机器翻译 (Neural Machine Translation, NMT): a type of machine translation system that uses neural networks to translate text from one language to another.

71、看门狗定时器 (Watchdog Timer): a system mechanism that is used to detect and recover from system failures, commonly used in embedded systems and critical applications.

72、自然语言处理 (Natural Language Processing, NLP): a subfield of artificial intelligence that focuses on the interaction between computers and humans using natural language, including tasks such as text classification, sentiment analysis, and language translation.

73、深度强化学习 (Deep Reinforcement Learning): a subfield of machine learning that combines deep learning with reinforcement learning to train agents to make decisions based on high-dimensional input data.

74、数据可视化 (Data Visualization): the process of displaying data in a graphical or pictorial format to enable easier understanding and analysis of the data.

75、数据科学 (Data Science): an interdisciplinary field that involves the extraction, analysis, and interpretation of large and complex datasets using statistical, mathematical, and machine learning techniques.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/4885.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2025 最新flutter面试总结

目录 1.Dart是值传递还是引用传递? 2.Flutter 是单引擎还是双引擎 3. StatelessWidget 和 StatefulWidget 在 Flutter 中有什么区别? 4.简述Dart语音特性 5. Navigator 是什么?在 Flutter 中 Routes 是什么? 6、Dart 是不是…

Flask简介与安装以及实现一个糕点店的简单流程

目录 1. Flask简介 1.1 Flask的核心特点 1.2 Flask的基本结构 1.3 Flask的常见用法 1.3.1 创建Flask应用 1.3.2 路由和视图函数 1.3.3 动态URL参数 1.3.4 使用模板 1.4 Flask的优点 1.5 总结 2. Flask 环境创建 2.1 创建虚拟环境 2.2 激活虚拟环境 1.3 安装Flask…

记一次常规的网络安全渗透测试

视频教程在我主页简介和专栏里 目录: 前言 互联网突破 第一层内网 第二层内网 总结 前言 上个月根据领导安排,需要到本市一家电视台进行网络安全评估测试。通过对内外网进行渗透测试,网络和安全设备的使用和部署情况,以及网络…

Dockerfile另一种使用普通用户启动的方式

基础镜像的Dockerfile # 使用 Debian 11.9 的最小化版本作为基础镜像 FROM debian:11.11# 维护者信息 LABEL maintainer"caibingsen" # 复制自定义的 sources.list 文件(如果有的话) COPY sources.list /etc/apt/sources.list # 创建…

学习ASP.NET Core的身份认证(基于JwtBearer的身份认证6)

重新创建WebApi项目,安装Microsoft.AspNetCore.Authentication.JwtBearer包,将之前JwtBearer测试项目中的初始化函数,jwt配置类、token生成类全部挪到项目中。   重新编写login函数,之前测试Cookie和Session认证时用的函数适合m…

opencv在图片上添加中文汉字(c++以及python)

opencv在图片上添加中文汉字(c以及python)_c opencv绘制中文 知乎-CSDN博客 环境: ubuntu18.04 desktopopencv 3.4.15 opencv是不支持中文的。 这里C代码是采用替换原图的像素点来实现的,实现之前我们先了解一下汉字点阵字库。…

Python_CUDA入门教程学习记录

这是本人21年读书时学习CUDA基础知识保留的一些笔记,学习时的内容出处和图片来源不记得了,仅作为个人记录! CUDA编程关键术语: host : cpudevice : GPUhost memory : cpu 内存device memory : gpu onboard显存kernels : 调用CPU上…

从 Spark 到 StarRocks:实现58同城湖仓一体架构的高效转型

作者:王世发,吴艳兴等,58同城数据架构部 导读: 本文介绍了58同城在其数据探查平台中引入StarRocks的实践,旨在提升实时查询性能。在面对传统Spark和Hive架构的性能瓶颈时,58同城选择StarRocks作为加速引擎&…

【机器学习实战中阶】比特币价格预测

比特币价格预测项目介绍 比特币价格预测项目是一个非常有实用价值的机器学习项目。随着区块链技术的快速发展,越来越多的数字货币如雨后春笋般涌现,尤其是比特币作为最早的加密货币,其价格波动备受全球投资者和研究者的关注。本项目的目标是…

.Net Core微服务入门全纪录(五)——Ocelot-API网关(下)

系列文章目录 1、.Net Core微服务入门系列(一)——项目搭建 2、.Net Core微服务入门全纪录(二)——Consul-服务注册与发现(上) 3、.Net Core微服务入门全纪录(三)——Consul-服务注…

Linux(centos)安装 MySQL 8 数据库(图文详细教程)

前言 前几天写了个window系统下安装Mysql的博客,收到很多小伙伴私信需要Linux下安装Mysql的教程,今天这边和大家分享一下,话不多说,看教程。 一、删除以前安装的MySQL服务 一般安装程序第一步都需要清除之前的安装痕迹&#xff…

Linux——入门基本指令汇总

目录 1. ls指令2. pwd3. whoami指令4. cd指令5. clear指令6. touch指令7. mkdir指令8. rm指令9. man指令10. cp指令11. mv指令12. cat指令13. tac指令14. more指令15. less指令16. head指令17. tail指令18. date指令19. cal指令20. find指令21. which指令22. alias指令23. grep…

2024又是一年的CSDN之旅-总结过去展望未来

一、前言 一年就这样在忙忙碌碌的工作和生活中一晃而过,总结今年在CSDN上发表的博客,也有上百篇之多,首先感谢CSDN这个平台,能让我有一个地方记录工作中的点点滴滴,也在上面学到了不少知识,解决了工作中遇到…

k8s集群换IP

k8s集群搭建及节点加入时需要确定IP,但安装完成后设备移动到新环境可能出现网段更换或者IP被占用的情况,导致无法ping通节点或者无法打开原IP的服务。 解决方法为保持原有IP不更换,给网卡再加一个IP 这边使用两个ubuntu虚拟机模拟服务器和w…

前端面试题-问答篇-5万字!

1. 请描述CSS中的层叠(Cascade)和继承(Inheritance)规则,以及它们在实际开发中的应用。 在CSS中,层叠(Cascade)和继承(Inheritance)是两个关键的规则&#x…

大数据学习(37)- Flink运行时架构

&&大数据学习&& 🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一下博主哦&#x1f91…

记一次数据库连接 bug

整个的报错如下: com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: Could not create connection to database server. Attempted reconnect 3 times. Giving up. at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Metho…

AI 编程工具—Cursor AI 对话模式详解 内嵌对话模式

AI 编程工具—Cursor AI 对话模式详解 内嵌对话模式 前面我们已经学习了Cursor 的两种工作模式,也就是Chat、Composer 更多细节可以看之前的文章 Cursor 对话模式详解 Chat、Composer 与 Normal/Agent 模式 这一节我们按一下最后一种模式,也就是内嵌对话模式 内嵌对话模式…

【计算机网络】传输层协议TCP与UDP

传输层 传输层位于OSI七层网络模型的第四层,主要负责端到端通信,可靠性保障(TCP),流量控制(TCP),拥塞控制(TCP),数据分段与分组,多路复用与解复用等,通过TCP与UDP协议实现…

Face2face:非深度学习时代如何进行实时的三维人脸重建

本文主要基于开源项目Face2face[1](中间会提及到face3d[2]和eos[3]),对采用传统优化方法从二维图片拟合3DMM的三维人脸重建算法整体流程做一个介绍。由于项目作者没有给出参考文献,笔者是从代码推论出来的整个算法,如有…