【鸿睿创智开发板试用】移植OpenCV 4到OpenHarmony 4.1

目录

目录

引言

编译系统镜像

(1) 下载代码后解压SDK

(2) 下载docker镜像  

(3) 编译OH

编译OpenCV

下载OpenCV源代码

构建编译配置文件

执行编译命令

安装库和头文件

测试

结语


引言

最近有个需求是在基于RK3568的OpenHarmony 4.1系统中使用OpenCV,于是就尝试了一下OpenCV移植到OpenHarmony的工作。

我使用的开发板是深圳鸿睿创智的H01开发板,它基于RK3568芯片,其他的开发板应该都差不多,可能路径和编译参数会有小的调整。

编译系统镜像

虽然OpenCV是个应用程序库,并不需要添加到系统镜像中,不过为了和开发板镜像采用同样的工具链,最好还是先编译一下系统镜像。

我采用的步骤是厂商建议的方法,也就是利用官方提供的OpenHarmony的Docker。具体方法如下:

(1) 下载代码后解压SDK

  tar -zxvf ohos-H01-sdk.tar.gzcd ohos-4.1-Release

(2) 下载docker镜像
  

docker run --name SG368Z-H1 --privileged -it -v $(pwd):/home/openharmony swr.cn-south-1.myhuaweicloud.com/openharmony-docker/docker_oh_standard:3.2


(3) 编译OH

  ./build.sh --product-name rk3568 –ccache --no-prebuilt-sdk   

注意:环境缺少python2会产生报错,需要下载python2再次执行编译命令。(pip install python2)

(4) 镜像生成路径
  out/rk3568/packages/phone/images/

编译OpenCV

移植OpenCV一般有两种方法,一种是将修改OH的gn文件,将OpenCV嵌入到系统文件中一起编译,另一种是用OH的工具链独立编译OpenCV。我采用的是后一种,这种方法和在Linux下惊醒OpenCV的交叉编译是基本相同的,我比较熟悉。

代码仓采用的是OpenHarmony社区提供的代码仓:OpenHarmony-SIG/third_party_opencvicon-default.png?t=O83Ahttps://gitee.com/openharmony-sig/third_party_opencv

这个仓库是基于OpenCV官方仓库4.5.5分支进行了OpenHarmony编译适配和拓展,可构建支持在OpenHarmony设备上运行的计算机视觉程序。 

编译之前需要先安装cmake:

apt install cmake

构建步骤如下:

下载OpenCV源代码

执行如下命令下载OpenCV代码到指定目录下。

git clone https://gitee.com/openharmony-sig/third_party_opencv.git

构建编译配置文件

进入到目录"platforms/ohos",修改arm-clang.toolchain.cmake文件如下:

set(CMAKE_CROSSCOMPILING TRUE)
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_CXX_COMPILER_ID Clang)
SET ( CMAKE_SYSTEM_PROCESSOR arm )SET ( CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER )
SET ( CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY )
SET ( CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY )SET ( CROSS_COMPILATION_ARCHITECTURE armv7-a )set(CMAKE_TOOLCHAIN_PREFIX llvm-)#指定c编译工具(确保工具链所在路径已经添加到了PATH环境变量中)和编译标志,使用clang编译时标志中必须指定--target,否则无法交叉编译。
set(CMAKE_C_COMPILER clang)
set(CMAKE_C_FLAGS "--target=aarch64-linux-ohos  -D__clang__  -mfloat-abi=softfp -mfpu=neon-vfpv4 -w")
#指定c++编译工具(确保工具链所在路径已经添加到了PATH环境变量中)和编译标志,必须指定--target,否则无法交叉编译。
set(CMAKE_CXX_COMPILER clang++)
set(CMAKE_CXX_FLAGS "--target=aarch64-linux-ohos  -D__clang__  -mfloat-abi=softfp -mfpu=neon-vfpv4 -w")
#指定链接工具和链接标志,必须指定--target和--sysroot。
set(CMAKE_LINKER clang)
set(CMAKE_CXX_LINKER clang++ )
set(CMAKE_C_LINKER clang)#指定链接库的查找路径。
set(CMAKE_SYSROOT "/home/openharmony/out/rk3568/obj/third_party/musl/")

由于我使用的是官方的Docker环境,clang编译器已经被加入PATH路径,所以这里没有指定编译器的路径。另外,SYSROOT的路径是根据我Docker的设置指定的。如果编译环境和我的配置不同,需要相应修改。

执行编译命令

执行如下命令:

cd third_party_opencv
mkdir build
cd build
cmake -DBUILD_TESTS=ON -DCMAKE_BUILD_TYPE=Release -DWITH_CUDA=OFF -DWITH_FFMPEG=ON -DCMAKE_TOOLCHAIN_FILE=../platforms/ohos/arm-clang.toolchain.cmake ..

cmake检查系统环境后,很快会生成makefile,最后看到如下信息表示生成正确。

........on-sections -fdata-sections  -fvisibility=hidden -fvisibility-inlines-hidden -g  -O0 -DDEBUG -D_DEBUG
--     Linker flags (Release):      -Wl,--gc-sections -Wl,--as-needed
--     Linker flags (Debug):        -Wl,--gc-sections -Wl,--as-needed
--     ccache:                      YES
--     Precompiled headers:         NO
--     Extra dependencies:          dl m pthread rt
--     3rdparty dependencies:
--
--   OpenCV modules:
--     To be built:                 calib3d core dnn features2d flann gapi highgui imgcodecs imgproc ml objdetect photo stitching ts video videoio
--     Disabled:                    world
--     Disabled by dependency:      -
--     Unavailable:                 java python2 python3
--     Applications:                tests perf_tests apps
--     Documentation:               NO
--     Non-free algorithms:         NO
--
--   GUI:                           NONE
--     GTK+:                        NO
--
--   Media I/O:
--     ZLib:                        zlib (ver 1.2.11)
--     JPEG:                        libjpeg-turbo (ver 2.1.2-62)
--     WEBP:                        build (ver encoder: 0x020f)
--     PNG:                         build (ver 1.6.37)
--     TIFF:                        build (ver 42 - 4.2.0)
--     JPEG 2000:                   build (ver 2.4.0)
--     HDR:                         YES
--     SUNRASTER:                   YES
--     PXM:                         YES
--     PFM:                         YES
--
--   Video I/O:
--     DC1394:                      NO
--     FFMPEG:                      NO
--       avcodec:                   NO
--       avformat:                  NO
--       avutil:                    NO
--       swscale:                   NO
--       avresample:                NO
--     GStreamer:                   NO
--     v4l/v4l2:                    YES (linux/videodev2.h)
--
--   Parallel framework:            pthreads
--
--   Trace:                         YES (with Intel ITT)
--
--   Other third-party libraries:
--     Lapack:                      NO
--     Custom HAL:                  YES (carotene (ver 0.0.1))
--     Protobuf:                    build (3.19.1)
--
--   OpenCL:                        YES (no extra features)
--     Include path:                /home/openharmony/third_party_opencv/3rdparty/include/opencl/1.2
--     Link libraries:              Dynamic load
--
--   Python (for build):            /usr/bin/python2.7
--
--   Install to:                    /usr/local
-- -----------------------------------------------------------------
--
-- Configuring done
-- Generating done
-- Build files have been written to: /home/openharmony/third_party_opencv/build

然后执行如下命令开始编译:

make -j 16

 这个过程可能较长,大概半小时左右,看电脑的配置。

至此,编译成功。 

安装库和头文件

最后,执行安装命令,把需要的头文件和库文件拷贝到一个目录下。

DESTDIR=/home/openharmony/opencv4/ make install

所有需要的文件都可以在"/home/openharmony/opencv4/usr/local/"下找到。

测试

编译后就可以把文件拷贝到设备上进行测试,测试的程序为官方的opencv_version(在opencv4/usr/local/bin目录下),它依赖libopencv_core.so文件在opencv4/usr/local/lib目录下)。

在Windows的控制台使用hdc目录实现文件拷贝。

hdc shell mount -o rw,remount /
hdc file send opencv_version /
hdc file send libopencv_core.so /

其中第一条目录是为了让设备的根目录可以写,否则会出现[Fail]Error opening file:read-only file system,path: xx 报错。

然后使用hdc shell目录登录到设备。

# chmod +x ./opencv_version
# export LD_LIBRARY_PATH=/
# ./opencv_version
4.5.5

移植工作获得了初步成功。 

结语

今天尝试了移植OpenCV 4到OpenHarmony 4.1,和Linux下交叉编译差不多,还比较顺利。后面将继续测试相关的App。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/489995.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TimesFM(Time Series Foundation Model)时间序列预测的数据研究(3)

前一篇完成了 TimesFM 的运行 TimesFM(Time Series Foundation Model)安装(2)-CSDN博客文章浏览阅读520次,点赞13次,收藏24次。决定在 小红帽ubuntu UBUNTU安装 timesFM在 ide.cloud.tencent.com 的环境上…

【潜意识Java】深入理解 Java 面向对象编程(OOP)

目录 什么是面向对象编程(OOP)? 1. 封装(Encapsulation) Java 中的封装 2. 继承(Inheritance) Java 中的继承 3. 多态(Polymorphism) Java 中的多态 4. 抽象&…

三、汇总统计

1.SUM、COUNT、AVERAGE 注意:count函数是计算区域中包含数字的单元格的个数,以上案例中两个空白单元格和一个中文列标题都是没有计算在内的。 平均函数AVERAGE也是按照17进行求平均值的。所以在使用平均值的函数时候,可以根据实际情况看是…

EXCEL的各种图形,统计图形

目录 0 EXCEL的各种图形,统计图形 1 统计图形 / 直方图 / 其实叫 频度图 hist最合适(用原始数据直接作图) 1.1 什么是频度图 1.2 如何创建频度图,一般是只选中1列数据(1个数组) 1.3 如何修改频度图的宽度 1.4 hist图的一个特…

基于Llamaindex的网页内容爬取实战

目的 本文不关注如何解析网页 html 元素和各种 python 爬虫技术,仅作为一种网页数据的预处理手段进行研究。Llamaindex 也并不是爬虫技术的集大成者,使用它是为了后续的存查一体化。 安装依赖 pip install llama-index-readers-web # pip install llam…

debian12学习笔记

前置条件 基于debian12官网的qcow2格式文件进行操作 安装ssh 登录虚拟机后安装ssh服务端 apt install openssh-server配置国内源 新增/etc/apt/sources.list.d/tsinghua.list 使用清华大学的源 https://www.cnblogs.com/shanhubei/p/18104430 deb https://mirrors.tuna.t…

鲲鹏麒麟安装Kafka-v1.1.1

因项目需要在鲲鹏麒麟服务器上安装Kafka v1.1.1,因此这里将安装配置过程记录下来。 环境说明 # 查看系统相关详细信息 [roottest kafka_2.12-1.1.1]# uname -a Linux test.novalocal 4.19.148 #1 SMP Mon Oct 5 22:04:46 EDT 2020 aarch64 aarch64 aarch64 GNU/Li…

UE5编辑器下将RenderTarget输出为UTexture并保存

在使用UE5开发项目时,RenderTarget是一种非常强大的工具,常用于生成实时纹理效果、后处理和调试。而将RenderTarget的内容转换为UTexture并储存,是许多编辑器内的需求都需要的功能。 1.材质球输出至Texture 首先创建一个Actor类&#xff0c…

电容Q值、损耗角、应用

电容发热的主要原因:纹波电压 当电容两端施加纹波电压时,电容承受的是变化的电压,由于电容内部存在寄生电阻(ESR)和寄生电感(ESL).因此电容会有能量损耗,从而产生热量,这…

go-zero(十三)使用MapReduce并发

go zero 使用MapReduce并发 一、MapReduce 介绍 MapReduce 是一种用于并行计算的编程模型,特别适合在大规模数据处理场景中简化逻辑代码。 官方文档: https://go-zero.dev/docs/components/mr 1. MapReduce 的核心概念 在 MapReduce 中,主…

入门pytorch-Transformer

前言 虽然Transformer是2017年由Google推出,如果按照读论文只读近两年的思路看,那它无疑是过时的,但可惜的是,目前很多论文的核心依然是Transformer,或者由其进行改进的,故本文使用pytorch来搭建一下Trans…

利用代理IP爬取Zillow房产数据用于数据分析

引言 最近数据分析的热度在编程社区不断攀升,有很多小伙伴都开始学习或从事数据采集相关的工作。然而,网站数据已经成为网站的核心资产,许多网站都会设置一系列很复杂的防范措施,阻止外部人员随意采集其数据。为了解决这个问题&a…

精品基于Python实现的微信小程序校园导航系统-微信小程序

[含文档PPT源码等] [包运行成功永久免费答疑辅导] 《django微信小程序校园导航系统》该项目采用技术Python的django框架、mysql数据库 ,项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、核心代码介绍视频等 软件开发环境及开发工具&#xf…

动手学深度学习-线性神经网络-7softmax回归的简洁实现

目录 初始化模型参数 重新审视Softmax的实现 优化算法 训练 小结 在 线性回归的实现中, 我们发现通过深度学习框架的高级API能够使实现 线性回归变得更加容易。 同样,通过深度学习框架的高级API也能更方便地实现softmax回归模型。 本节如在上一节…

09篇--图片的水印添加(掩膜的运用)

如何添加水印? 添加水印其实可以理解为将一张图片中的某个物体或者图案提取出来,然后叠加到另一张图片上。具体的操作思想是通过将原始图片转换成灰度图,并进行二值化处理,去除背景部分,得到一个类似掩膜的图像。然后…

封装数组去重的方法

前言 之前在工作中我一直在用lodash这个方法库,前段时间又接触了更现代化的方法库radash,这两个方法库可以说是各有优劣,lodash中有很实用的cloneDeep,radash中则有tryit、all等异步方法,它们都无法做到完全代替对方。…

前端成长之路:CSS复合选择器

复合选择器 在CSS中,可以根据选择器的类型将选择器分为基础选择器和复合选择器。 基础选择器就是前面提到过的类选择器、id选择器、标签选择器等;而复合选择器就是在基础选择器的基础之上,将基本选择器进行组合形成的。 复合选择器是由两个及…

在数字孪生开发领域threejs现在的最新版本已经更新到多少了?

在数字孪生开发领域three.js现在的最新版本已经更新到多少了? 在数字孪生开发领域,three.js作为一款强大的JavaScript 3D库,广泛应用于Web3D可视化、智慧城市、智慧园区、数字孪生等多个领域。随着技术的不断进步和需求的日益增长&#xff0…

HTML入门级学习笔记1【超详细】

目录 一、计算机基础知识 2.1 文件和文件夹管理 2.2 特殊按键和快捷键 2.3 打字速度 二、互联网的原理 3.1 上网就是请求数据 3.2 服务器 3.3 浏览器 3.4 HTTP 三、HTML初步认识 4.1 认识什么是纯文本文件txt 4.2 HTML是负责描述文档语义的语言 四、Sublime 五、HTML骨架和基本…

【网络】传输层协议UDP/TCP网络层IP数据链路层MACNAT详解

主页:醋溜马桶圈-CSDN博客 专栏:计算机网络原理_醋溜马桶圈的博客-CSDN博客 gitee:mnxcc (mnxcc) - Gitee.com 目录 1.传输层协议 UDP 1.1 传输层 1.2 端口号 1.3 UDP 协议 1.3.1 UDP 协议端格式 1.3.2 UDP 的特点 1.3.3 面向数据报 1…