自动驾驶控制与规划——Project 2: 车辆横向控制

目录

  • 零、任务介绍
  • 一、环境配置
  • 二、算法
  • 三、代码实现
  • 四、效果展示

零、任务介绍

  1. 补全src/ros-bridge/carla_shenlan_projects/carla_shenlan_stanley_pid_controller/src/stanley_controller.cpp中的TODO部分。

一、环境配置

上一次作业中没有配置docker使用gpu,后续可能有GPU计算的需求,因此重新运行一个带有GPU的容器。docker使用GPU的配置教程可以参考:在docker容器中使用nvidia显卡渲染rviz2界面。运行容器的命令如下:

docker run -d --net=host -it --name foxy_gpu --gpus all -e NVIDIA_DRIVER_CAPABILITIES=all\-v /home/star:/home/star \-v /tmp/.X11-unix:/tmp/.X11-unix \-v /dev:/dev \-v /dev/dri:/dev/dri \--env DISPLAY=unix:1 \--env ROS_DISTRO=foxy \fishros2/ros:foxy-desktop

二、算法

Stanley控制使用前轮中心作为参考点,根据轨迹上距离参考点最近的点计算偏航误差和横向误差。
在这里插入图片描述
首先根据参考点的heading和车的heading计算偏航误差 θ e \theta_e θe。然后考虑横向误差,由几何关系可得
tan ⁡ δ e = e d , d = v / k \begin{aligned} \tan \delta_e = \frac{e}{d}, d = v/k \end{aligned} tanδe=de,d=v/k
可得
δ e = tan ⁡ − 1 k e v \delta_e = \tan^{-1} \frac{ke}{v} δe=tan1vke
此处的增益 k k k根据实验调整。结合上述两个误差项可以得到Stanley控制律
δ ( t ) = θ e ( t ) + tan ⁡ − 1 k e ( t ) v ( t ) \delta(t) = \theta_e(t) + \tan^{-1}\frac{ke(t)}{v(t)} δ(t)=θe(t)+tan1v(t)ke(t)
观察上述控制律可以发现,当车速 v v v较低时,即便是比较小的横向误差 e e e也会引起反正切函数的剧烈变化,因此在分母上增加一项常数,控制律变为
δ ( t ) = θ e ( t ) + tan ⁡ − 1 ( k e ( t ) k s + v ( t ) ) \delta(t) = \theta_e(t) + \tan^{-1}\left(\frac{ke(t)}{k_s + v(t)} \right) δ(t)=θe(t)+tan1(ks+v(t)ke(t))
当车速较快时,如果轨迹的偏航角变化较大,直接跟踪会导致车辆横向振荡,因此可以在 θ e \theta_e θe中加入阻尼,即增加PD控制器。综上所述,最终的Stanley控制器如下
δ = P D ( θ ) + tan ⁡ − 1 ( k e ( t ) k s + v ( t ) ) \delta = PD(\theta) + \tan^{-1}\left(\frac{ke(t)}{k_s + v(t)} \right) δ=PD(θ)+tan1(ks+v(t)ke(t))

三、代码实现

此处使用的PD控制器可以参考上一个project中的实现方法自动驾驶控制与规划——Project 1: 车辆纵向控制。为了避免低速行驶时的横向振荡,加入参数 k s k_s ks

class StanleyController {
public:StanleyController(){};~StanleyController(){};void LoadControlConf();void ComputeControlCmd(const VehicleState &vehicle_state,const TrajectoryData &planning_published_trajectory,ControlCmd &cmd);void ComputeLateralErrors(const double x, const double y, const double theta,double &e_y, double &e_theta);TrajectoryPoint QueryNearestPointByPosition(const double x, const double y);protected:std::vector<TrajectoryPoint> trajectory_points_;double k_y_ = 0.0;double k_s_ = 0.0;	// 低速行驶时v小,较小的e也会导致atan振荡double u_min_ = 0.0;double u_max_ = 100.0;double theta_ref_;double theta_0_;
};
} // namespace control
} // namespace shenlan

这里的参数可以根据实验效果进行调整

void StanleyController::LoadControlConf() {k_y_ = 0.5;k_s_ = 0.5;
}

控制器整体的流程是:1.计算heading error;2.计算cross tracking error;3.利用Stanley控制器计算控制指令。需要注意对输出进行限幅。

void StanleyController::ComputeControlCmd(const VehicleState &vehicle_state, const TrajectoryData &planning_published_trajectory, ControlCmd &cmd) {trajectory_points_ = planning_published_trajectory.trajectory_points;// find the closest point on the reference trajectoryTrajectoryPoint nearest_pt = QueryNearestPointByPosition(vehicle_state.x, vehicle_state.y);// theta_ref_在QueryNearestPointByPosition中已经更新了// get lateral error and heading errordouble e_y = 0.0;double e_theta = 0.0;ComputeLateralErrors(vehicle_state.x - nearest_pt.x, vehicle_state.y - nearest_pt.y, vehicle_state.heading, e_y, e_theta);double e_theta_pd = e_theta_pid_controller.Control(e_theta, 0.01);cmd.steer_target = e_theta_pd + atan2(k_y_ * e_y, vehicle_state.velocity + k_s_);// 输出限幅if (cmd.steer_target > 1.0) {cmd.steer_target = 1.0;} else if (cmd.steer_target < -1.0) {cmd.steer_target = -1.0;}
}

在计算误差时需要注意,横向误差是带有方向的,以车辆朝向为参考,左正右负。偏航误差在计算时超过 [ − π , π ) [-\pi, \pi) [π,π)的需要重新标准化到 [ − π , π ) [-\pi, \pi) [π,π)中。

void StanleyController::ComputeLateralErrors(const double x, const double y, const double theta, double &e_y, double &e_theta) {// 车头方向的单位矢量 (cos(theta), sin(theta))// 横向误差以车辆朝向为参考,左正右负e_y = cos(theta) * y - sin(theta) * x;e_theta = theta - theta_ref_;if (e_theta <= -M_PI) {e_theta += 2 * M_PI;} else if (e_theta >= M_PI) {e_theta -= 2 * M_PI;}std::cout << "theta: " << theta << " theta_ref_: " << theta_ref_ << std::endl;std::cout << "e_theta: " << e_theta << std::endl;
}

四、效果展示

在宿主机启动carla仿真器

./CarlaUE4.sh -carla-rpc-port=2000 -prefernvidia

在docker容器中启动carla-ros-bridge

ros2 launch carla_shenlan_bridge_ego_vis carla_bridge_ego_vehicle.launch.py

启动控制节点

ros2 run carla_shenlan_stanley_pid_controller carla_shenlan_stanley_pid_controller_node

运行效果如下:

自动驾驶控制与规划——Project 2: 车辆横向控制

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/492186.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

双内核架构 Xenomai 4 安装教程

Xenomai 4是一种双内核架构, 继承了Xenomai系列的特点&#xff0c;通过在Linux内核中嵌入一个辅助核心&#xff08;companion core&#xff09;&#xff0c;来提供实时能力。这个辅助核心专门处理那些需要极低且有界响应时间的任务。 本文将在官网教程(https://evlproject.org/…

MySQL学习之DML操作

目录 插入 删除 修改 数据库事务 事务的特征&#xff08;ACID原则&#xff09; 原子性 一致性 隔离性 持久性 事务隔离级别 读未提交 读已提交 可重复读 序列化 脏读 虚读 幻读 插入 insert into 表名 values(); 要求插入数据的数量&#xff0c;类型要和定义…

clearvoice 语音降噪、语音分离库

参看: https://github.com/modelscope/ClearerVoice-Studio/tree/main ClearVoice 提供了一个统一的推理平台,用于语音增强、语音分离以及视听目标说话人提取。 代码参看: https://github.com/modelscope/ClearerVoice-Studio/tree/main/clearvoice https://github.com/mode…

linux打包qt程序

Linux下Qt程序打包_linuxdeployqt下载-CSDN博客 Linux/Ubuntu arm64下使用linuxdeployqt打包Qt程序_linuxdeployqt arm-CSDN博客 本篇文章的系统环境是 : 虚拟机ubuntu18.04 用下面这个qmake路径 进行编译 在 ~/.bashrc 文件末尾&#xff0c;qmake目录配置到文件末尾 将上图中…

qt-C++笔记之自定义类继承自 `QObject` 与 `QWidget` 及开发方式详解

qt-C笔记之自定义类继承自 QObject 与 QWidget 及开发方式详解 code review! 参考笔记 1.qt-C笔记之父类窗口、父类控件、对象树的关系 2.qt-C笔记之继承自 QWidget和继承自QObject 并通过 getWidget() 显示窗口或控件时的区别和原理 3.qt-C笔记之自定义类继承自 QObject 与 QW…

教师工作量管理系统

源代码地址&#xff1a;31、教师工作量管理系统 目录 1系统概述 1.1 研究背景 1.2研究目的 1.3系统设计思想 2相关技术 2.1 MYSQL数据库 2.2 B/S结构 2.3 Spring Boot框架简介 3系统分析 3.1可行性分析 3.1.1技术可行性 3.1.2经济可行性 3.1.3操作可行性 3.2系统性…

LiveData源码研究

LiveData 源码分析 前言 用过MVVM的大概知道LiveData可以感知组件的生命周期&#xff0c;当页面活跃时&#xff0c;更新页面数据&#xff0c; 当页面处于非活跃状态&#xff0c;它又会暂停更新&#xff0c;还能自动注册和注销观测者&#xff0c;能有效避免内存泄漏和不必要的…

vscode+msys2+clang+xmake c++开发环境搭建

转载请标明出处&#xff1a;小帆的帆的专栏 安装msys2 下载msys2安装包&#xff1a;清华源下载地址安装msys2&#xff1a;安装目录&#xff0c;C:\Softwares\msys64 安装cling工具链&#xff0c;xmake &#xff01;&#xff01;&#xff01;在开始菜单中启动MSYS2 CLANG64,…

VMware ubuntu16.04怎么设置静态IP联网

1.将VMware桥接到当前电脑使用的网络上面&#xff1b; 2.点击网络符号&#xff0c;编辑连接&#xff1b; 3.双击有线连接1&#xff1b; 4.选择IPv4设置&#xff0c;将地址&#xff0c;子网掩码&#xff0c;网关&#xff0c;DNS服务器设置好&#xff0c;保存&#xff1b; 5.在终…

金蝶云苍穹踩过的坑(慢慢更新)

IDEA不能用最新版&#xff0c;不然搜不到金蝶的插件。 我用的是2024.1.7/2023.1.7 IDEA里增加金蝶插件库的地址也变了&#xff0c;现在是 https://tool.kingdee.com/kddt/idea-updatePlugins.xml 金蝶云苍穹部署在服务器 MAC本地IDEA调试的时候&#xff0c;登录N次能成功一次…

【人工智能学习之HDGCN训练自己的数据集】

【人工智能学习之HDGCN训练自己的数据集】 HD-GCN准备事项项目代码开源数据集第一行&#xff1a;帧数第二行&#xff1a;body数第三行&#xff1a;关节附加信息第四行&#xff1a;关节数5-29行&#xff1a;每个关节的数据之后的帧总结&#xff1a; 自定义2D数据集模型移植与修改…

Trimble天宝三维激光扫描仪在建筑工程竣工测量中的应用【沪敖3D】

竣工测量是建筑项目竣工阶段的一个至关重要的环节&#xff0c;它为建筑工程的质量验收和成果核查提供了核心的参考依据。传统的竣工测量方法&#xff0c;如全站仪测量&#xff0c;主要依赖于现场人工操作&#xff0c;存在一些明显的局限性&#xff0c;例如作业时间长、工作量大…

Unity A*算法实现+演示

注意&#xff1a; 本文是对基于下方文章链接的理论&#xff0c;并最终代码实现&#xff0c;感谢作者大大的描述&#xff0c;非常详细&#xff0c;流程稍微做了些改动&#xff0c;文末有工程网盘链接&#xff0c;感兴趣的可以下载。 A*算法详解(个人认为最详细,最通俗易懂的一…

MoonBit 核心编译器正式开源!

由 IDEA研究院基础软件中心打造的 MoonBit &#xff08;月兔&#xff09;AI 原生开发平台&#xff0c;今日宣布正式开源其核心的编译器 WebAssembly&#xff08;简称“Wasm”&#xff09; 后端。开发者现在可以利用 MoonBit 的能力做性能优化&#xff0c;且直接参与 MoonBit 的…

JS使用random随机数实现简单的四则算数验证

1.效果图 2.代码实现 index.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</ti…

linux0.11源码分析第一弹——bootset.s内容

&#x1f680;前言 本系列主要参考的《linux源码趣读》&#xff0c;也结合之前《一个64位操作系统的设计与实现》的内容结合起来进行整理成本系列博客。在这一篇博客对应的是《linux源码趣读》第一~四回 目录 &#x1f680;前言&#x1f3c6;启动后的第一步&#x1f4c3;启动区…

OpenIPC开源FPV之Adaptive-Link天空端代码解析

OpenIPC开源FPV之Adaptive-Link天空端代码解析 1. 源由2. 框架代码2.1 消息机制2.2 超时机制 3. 报文处理3.1 special报文3.2 普通报文 4. 工作流程4.1 Profile 竞选4.2 Profile 研判4.2.1 回退策略4.2.2 保持策略 4.3 Profile 应用 5. 总结6. 参考资料7. 补充资料7.1 RSSI 和 …

【译】仅有 Text2SQL 是不够的: 用 TAG 统一人工智能和数据库

原文地址&#xff1a;Text2SQL is Not Enough: Unifying AI and Databases with TAG 摘要 通过数据库为自然语言问题提供服务的人工智能系统有望释放出巨大的价值。此类系统可让用户利用语言模型&#xff08;LM&#xff09;的强大推理和知识能力&#xff0c;以及数据管理系统…

【自动驾驶】单目摄像头实现自动驾驶3D目标检测

&#x1f351;个人主页&#xff1a;Jupiter. &#x1f680; 所属专栏&#xff1a;传知代码 欢迎大家点赞收藏评论&#x1f60a; 目录 概述算法介绍演示效果图像推理视频推理 核心代码算法处理过程使用方式环境搭建下载权重文件pytorch 推理&#xff08;自动选择CPU或GPU&#x…

什么是Modbus协议网关?

在工业自动化领域&#xff0c;设备间的通信与数据交换是实现高效、智能控制的关键。Modbus协议作为一种广泛应用的通信协议&#xff0c;自1971年由Modicon公司首次推出以来&#xff0c;便以其标准、开放、支持多种电气接口等特点&#xff0c;在工业控制系统中占据了重要地位。然…