梯度(Gradient)和 雅各比矩阵(Jacobian Matrix)的区别和联系:中英双语

雅各比矩阵与梯度:区别与联系

在数学与机器学习中,梯度(Gradient)雅各比矩阵(Jacobian Matrix) 是两个核心概念。虽然它们都描述了函数的变化率,但应用场景和具体形式有所不同。本文将通过深入解析它们的定义、区别与联系,并结合实际数值模拟,帮助读者全面理解两者,尤其是雅各比矩阵在深度学习与大模型领域的作用。


1. 梯度与雅各比矩阵的定义

1.1 梯度(Gradient)

梯度是标量函数(输出是一个标量)的变化率的向量化表示。

设函数 ( f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR ),其梯度是一个 ( n n n )-维向量:
∇ f ( x ) = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ⋮ ∂ f ∂ x n ] , \nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}, f(x)= x1fx2fxnf ,
表示在每个方向上 ( f f f ) 的变化率。

1.2 雅各比矩阵(Jacobian Matrix)

雅各比矩阵描述了向量函数(输出是一个向量)在输入点的变化率。

设函数 ( f : R n → R m \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m f:RnRm ),即输入是 ( n n n )-维向量,输出是 ( m m m )-维向量,其雅各比矩阵为一个 ( m × n m \times n m×n ) 的矩阵:
D f ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ⋯ ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ⋯ ∂ f 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ f m ∂ x 1 ∂ f m ∂ x 2 ⋯ ∂ f m ∂ x n ] . Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}. Df(x)= x1f1x1f2x1fmx2f1x2f2x2fmxnf1xnf2xnfm .

  • 每一行是某个标量函数 ( f i ( x ) f_i(x) fi(x) ) 的梯度;
  • 雅各比矩阵描述了函数在各输入维度上的整体变化。

2. 梯度与雅各比矩阵的区别与联系

方面梯度雅各比矩阵
适用范围标量函数 ( f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR )向量函数 ( f : R n → R m f: \mathbb{R}^n \to \mathbb{R}^m f:RnRm )
形式一个 ( n n n )-维向量一个 ( m × n m \times n m×n ) 的矩阵
含义表示函数 ( f f f ) 在输入空间的变化率表示向量函数 ( f f f ) 的所有输出分量对所有输入变量的变化率
联系梯度是雅各比矩阵的特殊情况(当 ( m = 1 m = 1 m=1 ) 时,雅各比矩阵退化为梯度)梯度可以看作雅各比矩阵的行之一(当输出是标量时只有一行)

3. 数值模拟:梯度与雅各比矩阵

示例函数

假设有函数 ( f : R 2 → R 2 \mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2 f:R2R2 ),定义如下:
f ( x 1 , x 2 ) = [ x 1 2 + x 2 x 1 x 2 ] . \mathbf{f}(x_1, x_2) = \begin{bmatrix} x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix}. f(x1,x2)=[x12+x2x1x2].

3.1 梯度计算(标量函数场景)

若我们关注第一个输出分量 ( f 1 ( x ) = x 1 2 + x 2 f_1(x) = x_1^2 + x_2 f1(x)=x12+x2 ),则其梯度为:
∇ f 1 ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ] = [ 2 x 1 1 ] . \nabla f_1(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 1 \end{bmatrix}. f1(x)=[x1f1x2f1]=[2x11].

3.2 雅各比矩阵计算(向量函数场景)

对整个函数 ( f \mathbf{f} f ),其雅各比矩阵为:
D f ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ] = [ 2 x 1 1 x 2 x 1 ] . Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 & 1 \\ x_2 & x_1 \end{bmatrix}. Df(x)=[x1f1x1f2x2f1x2f2]=[2x1x21x1].


3.3 Python 实现

以下代码演示了梯度和雅各比矩阵的数值计算:

import numpy as np# 定义函数
def f(x):return np.array([x[0]**2 + x[1], x[0] * x[1]])# 定义雅各比矩阵
def jacobian_f(x):return np.array([[2 * x[0], 1],[x[1], x[0]]])# 计算梯度和雅各比矩阵
x = np.array([1.0, 2.0])  # 输入点
gradient_f1 = np.array([2 * x[0], 1])  # f1 的梯度
jacobian = jacobian_f(x)  # 雅各比矩阵print("Gradient of f1:", gradient_f1)
print("Jacobian matrix of f:", jacobian)

运行结果:

Gradient of f1: [2. 1.]
Jacobian matrix of f:
[[2. 1.][2. 1.]]

4. 在机器学习和深度学习中的作用

4.1 梯度的作用

在深度学习中,梯度主要用于反向传播。当损失函数是标量时,其梯度指示了参数需要如何调整以最小化损失。例如:

  • 对于神经网络的参数 ( θ \theta θ ),损失函数 ( L ( θ ) L(\theta) L(θ) ) 的梯度 ( ∇ L ( θ ) \nabla L(\theta) L(θ) ) 用于优化器(如 SGD 或 Adam)更新参数。

4.2 雅各比矩阵的作用

  1. 多输出问题
    雅各比矩阵用于多任务学习和多输出模型(例如,Transformer 的输出是一个序列,维度为 ( m m m )),描述多个输出对输入的变化关系。

  2. 对抗样本生成
    在对抗攻击中,雅各比矩阵被用来计算输入的小扰动如何同时影响多个输出。

  3. 深度学习中的 Hessian-Free 方法
    雅各比矩阵是二阶优化方法(如 Newton 方法)中的重要组成部分,因为 Hessian 矩阵的计算通常依赖雅各比矩阵。

  4. 大模型推理与精调
    在大语言模型中,雅各比矩阵被用于研究模型对输入扰动的敏感性,或指导精调时的梯度裁剪与更新。


5. 总结

  • 梯度 是描述标量函数变化率的向量;
  • 雅各比矩阵 是描述向量函数所有输出对输入变化的矩阵;
  • 两者紧密相关:梯度是雅各比矩阵的特例。

在机器学习与深度学习中,梯度用于优化,雅各比矩阵在多任务学习、对抗训练和大模型分析中有广泛应用。通过数值模拟,我们可以直观理解它们的区别与联系,掌握它们在实际场景中的重要性。

英文版

Jacobian Matrix vs Gradient: Differences and Connections

In mathematics and machine learning, the gradient and the Jacobian matrix are essential concepts that describe the rate of change of functions. While they are closely related, they serve different purposes and are used in distinct scenarios. This blog will explore their definitions, differences, and connections through examples, particularly emphasizing the Jacobian matrix’s role in deep learning and large-scale models.


1. Definition of Gradient and Jacobian Matrix

1.1 Gradient

The gradient is a vector representation of the rate of change for a scalar-valued function.

For a scalar function ( f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR ), the gradient is an ( n n n )-dimensional vector:
∇ f ( x ) = [ ∂ f ∂ x 1 ∂ f ∂ x 2 ⋮ ∂ f ∂ x n ] . \nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}. f(x)= x1fx2fxnf .
This represents the direction and magnitude of the steepest ascent of ( f f f ).

1.2 Jacobian Matrix

The Jacobian matrix describes the rate of change for a vector-valued function.

For a vector function ( f : R n → R m \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m f:RnRm ), where the input is ( n n n )-dimensional and the output is ( m m m )-dimensional, the Jacobian matrix is an ( m × n m \times n m×n ) matrix:
D f ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ⋯ ∂ f 1 ∂ x n ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ⋯ ∂ f 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ f m ∂ x 1 ∂ f m ∂ x 2 ⋯ ∂ f m ∂ x n ] . Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}. Df(x)= x1f1x1f2x1fmx2f1x2f2x2fmxnf1xnf2xnfm .

  • Each row is the gradient of a scalar function ( f i ( x ) f_i(x) fi(x) );
  • The Jacobian matrix encapsulates all partial derivatives of ( f \mathbf{f} f ) with respect to its inputs.

2. Differences and Connections Between Gradient and Jacobian Matrix

AspectGradientJacobian Matrix
ScopeScalar function ( f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR )Vector function ( f : R n → R m f: \mathbb{R}^n \to \mathbb{R}^m f:RnRm )
FormAn ( n n n )-dimensional vectorAn ( m × n m \times n m×n ) matrix
MeaningRepresents the rate of change of ( f f f ) in the input spaceRepresents the rate of change of all outputs w.r.t. all inputs
ConnectionThe gradient is a special case of the Jacobian (when ( m = 1 m = 1 m=1 ))Each row of the Jacobian matrix is a gradient of ( f i ( x ) f_i(x) fi(x) )

3. Numerical Simulation: Gradient and Jacobian Matrix

Example Function

Consider the function ( f : R 2 → R 2 \mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2 f:R2R2 ) defined as:
f ( x 1 , x 2 ) = [ x 1 2 + x 2 x 1 x 2 ] . \mathbf{f}(x_1, x_2) = \begin{bmatrix} x_1^2 + x_2 \\ x_1 x_2 \end{bmatrix}. f(x1,x2)=[x12+x2x1x2].

3.1 Gradient Computation (Scalar Function Case)

If we focus on the first output component ( f 1 ( x ) = x 1 2 + x 2 f_1(x) = x_1^2 + x_2 f1(x)=x12+x2 ), the gradient is:
∇ f 1 ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ] = [ 2 x 1 1 ] . \nabla f_1(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 \\ 1 \end{bmatrix}. f1(x)=[x1f1x2f1]=[2x11].

3.2 Jacobian Matrix Computation (Vector Function Case)

For the full vector function ( f \mathbf{f} f ), the Jacobian matrix is:
D f ( x ) = [ ∂ f 1 ∂ x 1 ∂ f 1 ∂ x 2 ∂ f 2 ∂ x 1 ∂ f 2 ∂ x 2 ] = [ 2 x 1 1 x 2 x 1 ] . Df(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 & 1 \\ x_2 & x_1 \end{bmatrix}. Df(x)=[x1f1x1f2x2f1x2f2]=[2x1x21x1].


3.3 Python Implementation

The following Python code demonstrates how to compute the gradient and Jacobian matrix numerically:

import numpy as np# Define the function
def f(x):return np.array([x[0]**2 + x[1], x[0] * x[1]])# Define the Jacobian matrix
def jacobian_f(x):return np.array([[2 * x[0], 1],[x[1], x[0]]])# Input point
x = np.array([1.0, 2.0])# Compute the gradient of f1
gradient_f1 = np.array([2 * x[0], 1])  # Gradient of the first output component# Compute the Jacobian matrix
jacobian = jacobian_f(x)print("Gradient of f1:", gradient_f1)
print("Jacobian matrix of f:", jacobian)

Output:

Gradient of f1: [2. 1.]
Jacobian matrix of f:
[[2. 1.][2. 1.]]

4. Applications in Machine Learning and Deep Learning

4.1 Gradient Applications

In deep learning, the gradient is critical for backpropagation. When the loss function is a scalar, its gradient indicates how to adjust the parameters to minimize the loss. For example:

  • For a neural network with parameters ( θ \theta θ ), the loss function ( L ( θ ) L(\theta) L(θ) ) has a gradient ( ∇ L ( θ ) \nabla L(\theta) L(θ) ), which is used by optimizers (e.g., SGD, Adam) to update the parameters.

4.2 Jacobian Matrix Applications

  1. Multi-Output Models
    The Jacobian matrix is essential for multi-task learning or models with multiple outputs (e.g., transformers where the output is a sequence). It describes how each input affects all outputs.

  2. Adversarial Examples
    In adversarial attacks, the Jacobian matrix helps compute how small perturbations in input affect multiple outputs simultaneously.

  3. Hessian-Free Methods
    In second-order optimization methods (e.g., Newton’s method), the Jacobian matrix is used to compute the Hessian matrix, which is crucial for convergence.

  4. Large Model Fine-Tuning
    For large language models, the Jacobian matrix is used to analyze how sensitive a model is to input perturbations, guiding techniques like gradient clipping or parameter-efficient fine-tuning (PEFT).


5. Summary

  • The gradient is a vector describing the rate of change of a scalar function, while the Jacobian matrix is a matrix describing the rate of change of a vector function.
  • The gradient is a special case of the Jacobian matrix (when there is only one output dimension).
  • In machine learning, gradients are essential for optimization, whereas Jacobian matrices are widely used in multi-output models, adversarial training, and fine-tuning large models.

Through numerical simulations and real-world applications, understanding the gradient and Jacobian matrix can significantly enhance your knowledge of optimization, deep learning, and large-scale model analysis.

后记

2024年12月19日15点30分于上海,在GPT4o大模型辅助下完成。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/493314.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniApp使用腾讯地图提示未添加maps模块

uniApp使用腾讯地图,打包提示未添加maps模块解决方案 这是报错信息,在标准基座运行的时候是没问题的,但是打包后会提示未添加,可以通过在mainfest里面把地图插件上腾讯地图的key更换高德地图的key,定位服务可以继续用腾…

【开源项目】数字孪生轨道~经典开源项目数字孪生智慧轨道——开源工程及源码

飞渡科技数字孪生轨道可视化平台,基于国产数字孪生引擎,结合物联网IOT、大数据、激光雷达等技术,对交通轨道进行超远距、高精度、全天侯的监测,集成轨道交通运营数据,快速准确感知目标,筑牢轨交运营生命线。…

【HarmonyOS之旅】DevEco Studio的安装与环境配置

目录 1 -> 下载与安装DevEco Studio 1.1 -> 运行环境要求 1.2 -> 下载和安装DevEco Studio 2 -> 配置环境变量 3 -> 配置开发环境 4 -> 开发项目准备 5 -> 实用小技巧 5.1 -> 中文插件 2 -> 简化工程目录栏 1 -> 下载与安装DevEco Stud…

Word使用分隔符实现页面部分分栏

文章目录 Word使用分隔符实现页面部分分栏分隔符使用页面设置 Word使用分隔符实现页面部分分栏 分隔符使用 word中的分隔符: 前面不分栏,后面分栏(或前面分栏,后面不分栏),只需要在分隔位置处插入分隔符:“连续”即…

多协议视频监控汇聚/视频安防系统Liveweb搭建智慧园区视频管理平台

智慧园区作为现代化城市发展的重要组成部分,不仅承载着产业升级的使命,更是智慧城市建设的重要体现。随着产业园区竞争的逐渐白热化,将项目打造成完善的智慧园区是越来越多用户关注的内容。 然而我们往往在规划前期就开始面临众多难题&#…

PHP接入美团联盟推广

美团给的文档没有PHP的示例代码,下面是以Javascript示例更改的PHP代码,并且已经跑通 一、计算签名 签名类,因为接口不多,所以这里只写了获取请求头 class Meituan {private $APP_KEY 你的APP_KEY;private $APP_SECRET 你的APP…

ChatGPT重大更新:新增实时搜索和高级语音

12月17日消息,据报道,OpenAI开启了第八天技术分享直播,对ChatGPT搜索功能进行了大量更新。 此次ChatGPT新增的功能亮点纷呈。其中,实时搜索功能尤为引人注目。OpenAI对搜索算法进行了深度优化,使得用户提出问题后&…

Vue3组件封装技巧与心得

摘要: 日常开发中,用Vue组件进行业务拆分,代码解耦是一个很好的选择; 今天就来分享一下我在使用Vue3进行组件封装的一些技巧和心得,希望能够帮助到大家; 1. 组件特性: 在Vue中组件是一个独立的…

数据分析实战—鸢尾花数据分类

1.实战内容 (1) 加载鸢尾花数据集(iris.txt)并存到iris_df中,使用seaborn.lmplot寻找class(种类)项中的异常值,其他异常值也同时处理 。 import pandas as pd from sklearn.datasets import load_iris pd.set_option(display.max_columns, N…

【自用】通信内网部署rzgxxt项目_01,后端pipeDemo部署(使用nssm.exe仿照nohup)

做完这些工作之后,不要忘记打开 Windows Server 的防火墙端口,8181、8081、8080、22、443、1521 做完这些工作之后,不要忘记打开 Windows Server 的防火墙端口,8181、8081、8080、22、443、1521 做完这些工作之后,不要…

【Apache Doris】周FAQ集锦:第 26 期

SQL问题 Q1 doris 3.0存算分离模式下,建表的时是否需要指定表的副本数 不需要,指定了也会忽略;存算分离模式下,数据副本由远端存储去管控。 Q2 doris 通过dbeaver查询时报错:[SXXXX]… doris的错误码通常都是EXXXX&…

OpenSSL 心脏滴血漏洞(CVE-2014-0160)

OpenSSL 心脏滴血漏洞(CVE-2014-0160) Openssl简介: 该漏洞在国内被译为"OpenSSL心脏出血漏洞”,因其破坏性之大和影响的范围之广,堪称网络安全里程碑事件。 OpenSSL心脏滴血漏洞的大概原理是OpenSSL在2年前引入了心跳(hearbea0机制来维特TS链接的…

Git实用指南(精简版)

目录 读者须知 Git是什么 Git的原理 文件在Git中的几种状态 快速上手 结尾 读者须知 本文章适合从未接触过git,或者需要深度学习Git的用户进行阅读. 文末有详细的文档,读者可以前往Github下载阅读!!三克油 Git是什么 简单来说,Git是一个代码备份工具,你可以使用指令对…

YOLOv8目标检测(七)_AB压力测试

YOLOv8目标检测(一)_检测流程梳理:YOLOv8目标检测(一)_检测流程梳理_yolo检测流程-CSDN博客 YOLOv8目标检测(二)_准备数据集:YOLOv8目标检测(二)_准备数据集_yolov8 数据集准备-CSDN博客 YOLOv8目标检测(三)_训练模型:YOLOv8目标检测(三)_训…

在 Spring Boot 3 中实现基于角色的访问控制

基于角色的访问控制 (RBAC) 是一种有价值的访问控制模型,可增强安全性、简化访问管理并提高效率。它在管理资源访问对安全和运营至关重要的复杂环境中尤其有益。 我们将做什么 我们有一个包含公共路由和受限路由的 Web API。受限路由需要数据库中用户的有效 JWT。 现在用户…

线程知识总结(一)

1、概述 1.1 进程与线程 进程是程序运行时,操作系统进行资源分配的最小单位,包括 CPU、内存空间、磁盘 IO 等。从另一个角度讲,进程是程序在设备(计算机、手机等)上的一次执行活动,或者说是正在运行中的程…

OpenCV圆形标定板检测算法findGrid原理详解

OpenCV的findGrid函数检测圆形标定板的流程如下: class CirclesGridClusterFinder {CirclesGridClusterFinder(const CirclesGridClusterFinder&); public:CirclesGridClusterFinder

基于SpringBoot+Vue实现的个人备忘录系统

🎄 写在前面 最近学习vue,所以抽时间就用SpringBootVue做了一个个人备忘录,本意是想打造一个轻量级的、自托管的备忘录中心,可能是老了(haha),很多时候都觉得好记性不如烂笔头,所以就有了这个小…

docker简单命令

docker images 查看镜像文件 docker ps -a 查看容器文件 docker rm 0b2 删除容器文件,id取前三位即可 docker rmi e64 删除镜像文件(先删容器才能删镜像),id取前三位即可 在包含Dockerfile文件的目录…

【前端】vue数组去重的3种方法

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、数组去重说明二、Vue数组去重的3种方法 前言 随着开发语言及人工智能工具的普及,使得越来越多的人会主动学习使用一些开发工具,本…