重温设计模式--单例模式

文章目录

      • 单例模式(Singleton Pattern)概述
      • 单例模式的实现方式及代码示例
        • 1. 饿汉式单例(在程序启动时就创建实例)
        • 2. 懒汉式单例(在第一次使用时才创建实例)
      • 单例模式的注意事项
      • 应用场景
  • C++代码
      • 懒汉模式-经典版(线程不安全)
        • 经典版优化(线程安全)
      • 内部静态变量的懒汉实现
      • 饿汉模式

单例模式(Singleton Pattern)概述

  1. 定义
    单例模式是一种创建型设计模式,它确保一个类只有一个实例,并提供一个全局访问点来访问这个唯一实例。就像是在整个软件系统中,某个特定的对象只能有一个,并且各个部分都能方便地获取到这个唯一的对象。

  2. 作用

    • 资源共享与协调:适用于管理一些全局的资源,比如数据库连接池。整个应用程序通常只需要一个数据库连接池实例来协调和管理数据库连接的分配与回收,避免创建多个连接池导致资源浪费和管理混乱。
    • 状态一致性维护:在某些场景下,需要保证整个系统中某个对象的状态是唯一且一致的。例如,系统配置类,全局只有一份配置信息,各个模块获取的都是同一个配置实例,能保证配置的一致性,防止出现因多个不同配置实例而导致的逻辑混乱。
    • 节省内存和避免重复创建:对于一些创建成本较高或者占用较多系统资源的对象,只创建一个实例可以避免多次重复创建带来的内存消耗和性能开销,像一些复杂的日志记录类,创建实例可能涉及到初始化大量的文件操作相关资源等,单例模式可保证只创建一次。

在这里插入图片描述

单例模式的实现方式及代码示例

1. 饿汉式单例(在程序启动时就创建实例)
#include <iostream>// 饿汉式单例类
class Singleton {
private:// 将构造函数声明为私有,防止外部创建实例Singleton() {std::cout << "创建单例实例" << std::endl;}// 静态成员变量保存唯一实例,在程序启动时就初始化static Singleton* instance;
public:// 获取单例实例的静态方法static Singleton* getInstance() {return instance;}
};// 静态成员变量初始化,在程序启动时就创建好实例
Singleton* Singleton::instance = new Singleton;

以下是使用饿汉式单例的示例代码:

int main() {Singleton* s1 = Singleton::getInstance();Singleton* s2 = Singleton::getInstance();// 比较两个指针,应该指向同一个实例if (s1 == s2) {std::cout << "s1和s2是同一个实例" << std::endl;}return 0;
}

在饿汉式单例中:

  • 优点:实现简单,线程安全(因为在程序启动时就完成了实例的创建,不存在多个线程同时创建实例的竞争问题),在多线程环境下也能保证只有一个实例被创建。
  • 缺点:如果单例类的构造函数执行一些比较耗时或者占用大量资源的初始化操作,并且这个单例可能在程序运行很久之后才会被用到,那么会造成程序启动时不必要的性能开销,提前占用了系统资源。
2. 懒汉式单例(在第一次使用时才创建实例)
#include <iostream>
#include <mutex>// 懒汉式单例类
class Singleton {
private:Singleton() {std::cout << "创建单例实例" << std::endl;}// 静态成员变量保存唯一实例指针static Singleton* instance;// 互斥锁用于保证多线程环境下的线程安全static std::mutex mutex_;
public:// 获取单例实例的静态方法,使用了双重检查锁定(DCLP)来优化线程安全和性能static Singleton* getInstance() {if (instance == nullptr) {std::lock_guard<std::mutex> guard(mutex_);if (instance == nullptr) {instance = new Singleton;}}return instance;}
};// 静态成员变量初始化
Singleton* Singleton::instance = nullptr;
std::mutex Singleton::mutex_;

以下是使用懒汉式单例的示例代码:

int main() {Singleton* s1;Singleton* s2;// 模拟多线程环境下获取单例实例std::thread t1([&]() { s1 = Singleton::getInstance(); });std::thread t2([&]() { s2 = Singleton::getInstance(); });t1.join();t2.join();if (s1 == s2) {std::cout << "s1和s2是同一个实例" << std::endl;}return 0;
}

在懒汉式单例中:

  • 优点:实例在第一次使用时才创建,避免了程序启动时不必要的资源占用和性能开销,对于那些创建成本较高且可能不会马上用到的单例对象比较合适。
  • 缺点:实现相对复杂一些,需要考虑多线程环境下的线程安全问题,虽然使用了双重检查锁定等优化手段,但如果处理不当还是可能出现问题(比如内存乱序执行等情况,不过现代编译器和处理器一般会有相应机制来尽量避免)。

单例模式的注意事项

  1. 构造函数私有:无论是饿汉式还是懒汉式,都要将构造函数声明为私有,这样可以防止外部代码通过常规的方式(如Singleton s;这种直接实例化的语句)来创建多个实例,保证了单例的唯一性。
  2. 线程安全问题:在多线程环境下,懒汉式单例需要特别注意线程安全,要采用合适的同步机制(如互斥锁、原子操作等)来确保在多个线程同时尝试获取实例时,只有一个线程能够创建实例,避免创建出多个实例破坏单例模式的规则。而饿汉式单例天然具有一定的线程安全性,但也需要根据具体应用场景来考虑是否满足需求。
  3. 对象生命周期管理:要注意单例对象的生命周期,尤其是在动态内存分配(如new操作符创建实例)的情况下,需要合理地处理实例的释放,避免内存泄漏等问题。例如,可以通过定义一个静态的析构函数来释放单例对象占用的资源,但这需要谨慎设计,防止出现意外的行为。

单例模式在很多软件系统中都有广泛应用,不过也要根据实际情况合理选择合适的实现方式和注意相关的设计要点,以确保其能正确地发挥作用。

应用场景

  1. 系统配置管理:在一个应用程序中,通常会有各种配置信息,如数据库连接配置、服务器端口配置、应用程序的一些全局参数等。将这些配置信息封装在一个单例的配置类中,整个系统通过唯一的实例来获取和修改配置,保证了配置的一致性,并且方便统一管理。
  2. 日志记录器:用于记录程序运行过程中的各种日志信息,整个程序往往只需要一个日志记录实例来将日志输出到文件、控制台或者发送到远程日志服务器等。不同的模块都向这个唯一的日志记录器实例写入日志,确保日志管理的统一性和有序性。
  3. 线程池管理:在多线程编程中,线程池是管理和复用线程资源的重要组件。一般一个应用程序只需要一个线程池实例,通过这个单例的线程池来分配线程执行任务、回收线程等,避免创建多个线程池导致资源浪费和线程调度混乱。
  4. 缓存机制:例如网页缓存、数据库查询结果缓存等场景。以网页缓存为例,一个网站服务器可以有一个单例的缓存类,用于存储经常访问的网页内容,下次再有相同请求时可以直接从缓存中获取,减少服务器的响应时间和数据库等资源的消耗,而且只有一个缓存实例方便管理缓存的有效性、容量控制等。

C++代码

懒汉模式-经典版(线程不安全)

#include <iostream>
using namespace std;//懒汉模式
class Singleton
{
public:
/**
*需要提供要给全局访问点,就需要在类中定义一个static函数,返回在类内部唯一构造的实例
*/static Singleton *GetInstance(){if (m_Instance == NULL ){m_Instance = new Singleton ();}return m_Instance;}static void DestoryInstance(){if (m_Instance != NULL ){delete m_Instance;m_Instance = NULL ;}}private:
/**
*构造函数卸载私有里,为了防止在外部调用类的构造函数而构造实例
*/Singleton();static Singleton *m_Instance;
};Singleton *Singleton ::m_Instance = NULL;int main(int argc , char *argv [])
{Singleton *singletonObj = Singleton ::GetInstance(); Singleton ::DestoryInstance();return 0;
}
经典版优化(线程安全)
#include <iostream>
using namespace std;//懒汉模式
class Singleton
{
public:
/*
此处进行了两次m_Instance == NULL的判断,是借鉴了Java的单例模式实现时,使用的所谓的“双检锁”机制。
因为进行一次加锁和解锁是需要付出对应的代价的,而进行两次判断,就可以避免多次加锁与解锁操作,同时也
保证了线程安全。但是,这种实现方法在平时的项目开发中用的很好,也没有什么问题?但是,如果进行大数据
的操作,加锁操作将成为一个性能的瓶颈;为此,一种新的单例模式的实现也就出现了。
*/static Singleton *GetInstance(){if (m_Instance == NULL ){Lock(); if (m_Instance == NULL ){m_Instance = new Singleton ();}UnLock(); }return m_Instance;}static void DestoryInstance(){if (m_Instance != NULL ){delete m_Instance;m_Instance = NULL ;}}
private:Singleton();static Singleton *m_Instance;
};Singleton *Singleton ::m_Instance = NULL;int main(int argc , char *argv [])
{Singleton *singletonObj = Singleton ::GetInstance();Singleton ::DestoryInstance();return 0;
}

内部静态变量的懒汉实现

此方法也很容易实现,在instance函数里定义一个静态的实例,也可以保证拥有唯一实例,在返回时只需要返回其指针就可以了。推荐这种实现方法,真得非常简单。

#include <iostream>
using namespace std;class Singleton
{
public:static Singleton *GetInstance(){lock();static Singleton m_Instance;unlock();return &m_Instance;} 
private:Singleton();};int main(int argc , char *argv [])
{Singleton *singletonObj = Singleton ::GetInstance();cout<<singletonObj->GetTest()<<endl;singletonObj = Singleton ::GetInstance();cout<<singletonObj->GetTest()<<endl;
}

饿汉模式

#include <iostream>
using namespace std;class Singleton
{
public:static Singleton *GetInstance(){return m_instace;} 
private:Singleton();static Singleton *m_instance;};
Singleton* Singleton :: m_instance = new Singleton();
int main(int argc , char *argv [])
{Singleton *singletonObj = Singleton ::GetInstance();singletonObj = Singleton ::GetInstance();return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/494962.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

金仓数据库安装-Kingbase v9-centos

在很多年前有个项目用的金仓数据库&#xff0c;上线稳定后就没在这个项目了&#xff0c;只有公司的开发环境还在维护&#xff0c;已经好多年没有安装过了&#xff0c;重温一下金仓数据库安装&#xff0c;体验一下最新版本&#xff0c;也做一个新版本的试验环境&#xff1b; 一、…

LabVIEW中什么和C 语言指针类似?

在LabVIEW中&#xff0c;与C语言指针类似的概念是 引用 (Reference)。 引用在LabVIEW中主要用于以下几个方面&#xff1a; 数据引用&#xff1a;LabVIEW通过引用传递数据&#xff0c;而不是复制数据。通过引用&#xff0c;多个VIs可以共享数据而不需要复制整个数据结构&#xf…

医疗大模型威胁攻击下的医院AI安全:挑战与应对策略

一、引言 1.1 研究背景与意义 随着人工智能技术的迅猛发展,医疗大模型作为一种新兴的技术手段,正逐渐渗透到医疗领域的各个环节,为医疗服务的数字化转型带来了前所未有的机遇。从辅助诊断到疾病预测,从个性化治疗方案的制定到医疗资源的优化配置,医疗大模型展现出了巨大…

在 Vue3 项目中安装和配置 Three.js

简介 Three.js 是一个轻量级的 WebGL 封装库&#xff0c;用于在浏览器中渲染复杂的 3D 图形。它提供了便捷的 API&#xff0c;可以快速构建 3D 场景、对象和动画。 Vue.js 是一个渐进式 JavaScript 框架&#xff0c;擅长构建用户界面。其响应式数据绑定和组件系统使得复杂的交…

编译原理复习---正则表达式+有穷自动机

适用于电子科技大学编译原理期末考试复习。 1. 正则表达式 正则表达式&#xff08;Regular Expression&#xff0c;简称regex或regexp&#xff09;是一种用于描述、匹配和操作文本模式的强大工具。它由一系列字符和特殊符号组成&#xff0c;这些字符和符号定义了一种搜索模式…

漏洞检测工具:HOST头部攻击

HOST头部攻击 漏洞定义 Host头部字段在HTTP协议中用于指定请求所针对的域名&#xff0c;以便服务器能够正确地将请求路由到相应的Web应用程序。攻击者通过篡改HTTP请求中的Host头部字段来执行恶意操作。 漏洞危害 Host头部攻击的危害在于它能导致敏感信息泄露、恶意内容执行…

ROS1入门教程6:复杂行为处理

一、新建项目 # 创建工作空间 mkdir -p demo6/src && cd demo6# 创建功能包 catkin_create_pkg demo roscpp rosmsg actionlib_msgs message_generation tf二、创建行为 # 创建行为文件夹 mkdir action && cd action# 创建行为文件 vim Move.action# 定义行为…

DL作业11 LSTM

习题6-4 推导LSTM网络中参数的梯度&#xff0c; 并分析其避免梯度消失的效果 LSTM&#xff08;长短期记忆网络&#xff09;是一种特殊的循环神经网络&#xff08;RNN&#xff09;&#xff0c;旨在解决普通 RNN 在处理长序列时遇到的梯度消失和梯度爆炸问题。它通过设计多个门…

WWW23-多行为级联|级联图卷积网络的多行为推荐

论文&#xff1a;https://arxiv.org/abs/2303.15720 代码&#xff1a;https://github.com/SS-00-SS/MBCGCN 这篇论文MB-CGCN和上一篇CRGCN是同一个团队的&#xff0c;都是级联的方式。一个用了残差&#xff0c;一个用了特征转换&#xff0c;文章最后有discussion讨论了两者的不…

JAVA开发入门学习七- 数组

数组的概念 概念 数组&#xff1a; 是多个相同类型数据按照一定排列的集合&#xff0c;并使用一个名字命名&#xff0c;并通过编号的方式对这些数据进行统一管理 数组中的概念 数组名&#xff1a; 数组的名称&#xff0c;命名 下标&#xff1a; 从0开始 元素&#xff1a;…

【编辑器扩展】打开持久化路径/缓存路径/DataPath/StreamingAssetsPath文件夹

代码 [MenuItem("Assets/Open Explorer/PersistentDataPath")]public static void OpenPersistentDataPath(){Application.OpenURL(Application.persistentDataPath);}[MenuItem("Assets/Open Explorer/DataPath")]public static void OpenDataPath(){Appl…

链路聚合与GVRP的混合构建(eNSP)

目录 拓扑图&#xff1a; 前置操作&#xff1a; GVRP全局开启&#xff1a; 查询&#xff1a; 实验背景&#xff1a;前面依次搭建了交换机的链路聚合实验手册以及动态vlan GVRP&#xff0c;为了模拟真实环境&#xff0c;本次实验将两者结合。 拓扑图&#xff1a; 前置操作&…

由于这些关键原因,我总是手边有一台虚拟机

概括 虚拟机提供了一个安全的环境来测试有风险的设置或软件,而不会影响您的主系统。设置和保存虚拟机非常简单,无需更改主要设备即可方便地访问多个操作系统。运行虚拟机可能会占用大量资源,但现代 PC 可以很好地处理它,为实验和工作流程优化提供无限的可能性。如果您喜欢使…

华为ensp--BGP路由反射器

学习新思想、争做新青年&#xff0c;今天学习的是BGP路由反射器。 实验目的 理解BGP路由反射器的应用场景 理解BGP路由反射器的工作原理 掌握BGP路由反射器的基本配置方法 实验内容 本实验网络包含了两个AS&#xff0c;两个Cluster。R1、R2、R3属于Cluster 1&#xff0c…

使用idea创建JDK8的SpringBoot项目

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 使用idea创建JDK8的SpringBoot项目 前言我们经常在创建新的springboot项目&#xff0c;默认使用的是spring.io进行创建&#xff0c;但是它总是只会提供高版本的创建方式&…

初学stm32 --- 定时器中断

目录 时钟选择&#xff1a; 内部时钟选择​编辑 时钟计算方法&#xff1a; 计数器模式 向下计数模式&#xff08;时钟分频因子1&#xff0c;ARR36&#xff09; 向上计数模式&#xff08;时钟分频因子1&#xff0c;ARR36&#xff09; 中央对齐计数模式&#xff08;时钟分频因…

windows下安装配置anaconda及常用的conda命令

Anaconda极大的简化了Python环境和库的管理&#xff0c;其最大的作用就是可以创建、管理多个不同python版本的虚拟环境&#xff0c;起到不同环境相互隔离、互不干扰、避免环境冲突的目的。如果使用本地Python安装多个包&#xff0c;经常会遇到包冲突&#xff0c;导致整个python…

安装CPU版的torch(清华源)

1、安装指令&#xff1a; pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple2、验证torch是否安装成功 // 使用python验证 import torch print(torch.__version__)能正常打印版本即表示安装成功&#xff0c;如下图

ASP.NET Core Web API 控制器

文章目录 一、基类&#xff1a;ControllerBase二、API 控制器类属性三、使用 Get() 方法提供天气预报结果 在深入探讨如何编写自己的 PizzaController 类之前&#xff0c;让我们先看一下 WeatherController 示例中的代码&#xff0c;了解它的工作原理。 在本单元中&#xff0c…

【蓝桥杯——物联网设计与开发】基础模块8 - RTC

目录 一、RTC &#xff08;1&#xff09;资源介绍 &#x1f505;简介 &#x1f505;时钟与分频&#xff08;十分重要‼️&#xff09; &#xff08;2&#xff09;STM32CubeMX 软件配置 &#xff08;3&#xff09;代码编写 &#xff08;4&#xff09;实验现象 二、RTC接口…