代码参考正点原子
i2c_dri:主要是三段式状态机的编写
module iic_dri#(parameter SLAVE_ADDR = 7'b1010000 , //EEPROM从机地址parameter CLK_FREQ = 26'd50_000_000, //模块输入的时钟频率parameter I2C_FREQ = 18'd250_000 //IIC_SCL的时钟频率)( input clk , input rst_n , //i2c interface input i2c_exec , //I2C触发执行信号input bit_ctrl , //字地址位控制(16b/8b),1代表字地址是16位的,0是8位的input i2c_rh_wl , //I2C读写控制信号 ,1代表读数据,0代表写数据input [15:0] i2c_addr , //I2C器件内地址input [ 7:0] i2c_data_w , //I2C要写的数据output reg [ 7:0] i2c_data_r , //I2C读出的数据output reg i2c_done , //I2C一次操作完成output reg i2c_ack , //I2C应答标志 0:应答 1:未应答output reg scl , //I2C的SCL时钟信号inout sda , //I2C的SDA信号//user interface output reg dri_clk //驱动I2C操作的驱动时钟);//localparam define
localparam st_idle = 8'b0000_0001; //空闲状态
localparam st_sladdr = 8'b0000_0010; //发送器件地址(slave address)
localparam st_addr16 = 8'b0000_0100; //发送16位字地址
localparam st_addr8 = 8'b0000_1000; //发送8位字地址
localparam st_data_wr = 8'b0001_0000; //写数据(8 bit)
localparam st_addr_rd = 8'b0010_0000; //发送器件地址读
localparam st_data_rd = 8'b0100_0000; //读数据(8 bit)
localparam st_stop = 8'b1000_0000; //结束I2C操作//reg define
reg sda_dir ; //I2C数据(SDA)方向控制
reg sda_out ; //SDA输出信号
reg st_done ; //状态结束
reg wr_flag ; //写标志
reg [ 6:0] cnt ; //计数
reg [ 7:0] cur_state ; //状态机当前状态
reg [ 7:0] next_state; //状态机下一状态
reg [15:0] addr_t ; //地址
reg [ 7:0] data_r ; //读取的数据
reg [ 7:0] data_wr_t ; //I2C需写的数据的临时寄存
reg [ 9:0] clk_cnt ; //分频时钟计数//wire define
wire sda_in ; //SDA输入信号
wire [8:0] clk_divide ; //模块驱动时钟的分频系数//*****************************************************
//** main code
//*****************************************************//SDA控制
assign sda = sda_dir ? sda_out : 1'bz; //SDA数据输出或高阻
assign sda_in = sda ; //SDA数据输入
assign clk_divide = (CLK_FREQ/I2C_FREQ) >> 2'd2;//模块驱动时钟的分频系数//生成I2C的SCL的四倍频率的驱动时钟用于驱动i2c的操作
always @(posedge clk or negedge rst_n) beginif(!rst_n) begindri_clk <= 1'b0;clk_cnt <= 10'd0;endelse if(clk_cnt == clk_divide[8:1] - 1'd1) beginclk_cnt <= 10'd0;dri_clk <= ~dri_clk;endelseclk_cnt <= clk_cnt + 1'b1;
end//(三段式状态机)同步时序描述状态转移
always @(posedge dri_clk or negedge rst_n) beginif(!rst_n)cur_state <= st_idle;elsecur_state <= next_state;
end//组合逻辑判断状态转移条件
always @(*) beginnext_state = st_idle; //清除锁存器case(cur_state)st_idle: begin //空闲状态if(i2c_exec) beginnext_state = st_sladdr; //器件地址endelsenext_state = st_idle;endst_sladdr: beginif(st_done) beginif(bit_ctrl) //判断是16位还是8位字地址next_state = st_addr16; //字地址的高8位elsenext_state = st_addr8 ; //字地址的低8位endelsenext_state = st_sladdr;endst_addr16: begin //写16位字地址if(st_done) beginnext_state = st_addr8;endelse beginnext_state = st_addr16;endendst_addr8: begin //8位字地址if(st_done) beginif(wr_flag==1'b0) //读写判断next_state = st_data_wr;elsenext_state = st_addr_rd;endelse beginnext_state = st_addr8;endendst_data_wr: begin //写数据(8 bit)if(st_done)next_state = st_stop;elsenext_state = st_data_wr;endst_addr_rd: begin //写地址以进行读数据if(st_done) beginnext_state = st_data_rd;endelse beginnext_state = st_addr_rd;endendst_data_rd: begin //读取数据(8 bit)if(st_done)next_state = st_stop;elsenext_state = st_data_rd;endst_stop: begin //结束I2C操作if(st_done)next_state = st_idle;elsenext_state = st_stop ;enddefault: next_state= st_idle;endcase
end//时序电路描述状态输出
always @(posedge dri_clk or negedge rst_n) begin//复位初始化if(!rst_n) beginscl <= 1'b1;sda_out <= 1'b1;sda_dir <= 1'b1; i2c_done <= 1'b0; i2c_ack <= 1'b0; cnt <= 1'b0; st_done <= 1'b0; data_r <= 1'b0; i2c_data_r<= 1'b0; wr_flag <= 1'b0; addr_t <= 1'b0; data_wr_t <= 1'b0; end else begin st_done <= 1'b0 ; cnt <= cnt +1'b1 ; case(cur_state) st_idle: begin //空闲状态scl <= 1'b1; sda_out <= 1'b1; //当sda_dir为1时,sda_out就是sda sda_dir <= 1'b1; i2c_done<= 1'b0; cnt <= 7'b0; if(i2c_exec) begin wr_flag <= i2c_rh_wl ; addr_t <= i2c_addr ; data_wr_t <= i2c_data_w; i2c_ack <= 1'b0; end end st_sladdr: begin //写地址(器件地址和字地址)case(cnt) 7'd1 : sda_out <= 1'b0; //开始I2C 起始信号 7'd3 : scl <= 1'b0; //scl在3、5、7、9...时0 1 0 1变化,四分频7'd4 : sda_out <= SLAVE_ADDR[6]; //传送器件地址7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= SLAVE_ADDR[5]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= SLAVE_ADDR[4]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= SLAVE_ADDR[3]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= SLAVE_ADDR[2]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= SLAVE_ADDR[1]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= SLAVE_ADDR[0]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: sda_out <= 1'b0; //0:写 表示接着写 7'd33: scl <= 1'b1; 7'd35: scl <= 1'b0; 7'd36: begin sda_dir <= 1'b0; //拉低释放总线 sda_out <= 1'b1; end 7'd37: scl <= 1'b1; 7'd38: begin //从机应答 st_done <= 1'b1;if(sda_in == 1'b1) //高电平表示未应答 0表示有效应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd39: begin scl <= 1'b0; cnt <= 1'b0; end default : ; endcase end st_addr16: begin case(cnt) 7'd0 : begin sda_dir <= 1'b1 ; sda_out <= addr_t[15]; //传送字地址i2c_addrend 7'd1 : scl <= 1'b1; //四分频 7'd3 : scl <= 1'b0; 7'd4 : sda_out <= addr_t[14]; 7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= addr_t[13]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= addr_t[12]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= addr_t[11]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= addr_t[10]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= addr_t[9]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= addr_t[8]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: begin sda_dir <= 1'b0; sda_out <= 1'b1; end 7'd33: scl <= 1'b1; 7'd34: begin //从机应答st_done <= 1'b1; if(sda_in == 1'b1) //高电平表示未应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd35: begin scl <= 1'b0; cnt <= 1'b0; end default : ; endcase end st_addr8: begin case(cnt) 7'd0: begin sda_dir <= 1'b1 ; sda_out <= addr_t[7]; //字地址end 7'd1 : scl <= 1'b1; 7'd3 : scl <= 1'b0; 7'd4 : sda_out <= addr_t[6]; // 7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= addr_t[5]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= addr_t[4]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= addr_t[3]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= addr_t[2]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= addr_t[1]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= addr_t[0]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: begin sda_dir <= 1'b0; sda_out <= 1'b1; end 7'd33: scl <= 1'b1; 7'd34: begin //从机应答st_done <= 1'b1; if(sda_in == 1'b1) //高电平表示未应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd35: begin scl <= 1'b0; cnt <= 1'b0; end default : ; endcase end st_data_wr: begin //写数据(8 bit)case(cnt) 7'd0: begin sda_out <= data_wr_t[7]; //I2C写8位数据 data_wr_t要写的数据sda_dir <= 1'b1; end 7'd1 : scl <= 1'b1; 7'd3 : scl <= 1'b0; 7'd4 : sda_out <= data_wr_t[6]; 7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= data_wr_t[5]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= data_wr_t[4]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= data_wr_t[3]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= data_wr_t[2]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= data_wr_t[1]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= data_wr_t[0]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: begin sda_dir <= 1'b0; sda_out <= 1'b1; end 7'd33: scl <= 1'b1; 7'd34: begin //从机应答st_done <= 1'b1; if(sda_in == 1'b1) //高电平表示未应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd35: begin scl <= 1'b0; cnt <= 1'b0; end default : ; endcase end st_addr_rd: begin //写地址以进行读数据case(cnt) 7'd0 : begin sda_dir <= 1'b1; sda_out <= 1'b1; end 7'd1 : scl <= 1'b1; 7'd2 : sda_out <= 1'b0; //重新开始7'd3 : scl <= 1'b0; 7'd4 : sda_out <= SLAVE_ADDR[6]; //传送器件地址7'd5 : scl <= 1'b1; 7'd7 : scl <= 1'b0; 7'd8 : sda_out <= SLAVE_ADDR[5]; 7'd9 : scl <= 1'b1; 7'd11: scl <= 1'b0; 7'd12: sda_out <= SLAVE_ADDR[4]; 7'd13: scl <= 1'b1; 7'd15: scl <= 1'b0; 7'd16: sda_out <= SLAVE_ADDR[3]; 7'd17: scl <= 1'b1; 7'd19: scl <= 1'b0; 7'd20: sda_out <= SLAVE_ADDR[2]; 7'd21: scl <= 1'b1; 7'd23: scl <= 1'b0; 7'd24: sda_out <= SLAVE_ADDR[1]; 7'd25: scl <= 1'b1; 7'd27: scl <= 1'b0; 7'd28: sda_out <= SLAVE_ADDR[0]; 7'd29: scl <= 1'b1; 7'd31: scl <= 1'b0; 7'd32: sda_out <= 1'b1; //1:读7'd33: scl <= 1'b1; 7'd35: scl <= 1'b0; 7'd36: begin sda_dir <= 1'b0; sda_out <= 1'b1; end7'd37: scl <= 1'b1;7'd38: begin //从机应答st_done <= 1'b1; if(sda_in == 1'b1) //高电平表示未应答i2c_ack <= 1'b1; //拉高应答标志位 end 7'd39: beginscl <= 1'b0;cnt <= 1'b0;enddefault : ;endcaseendst_data_rd: begin //读取数据(8 bit)case(cnt)7'd0: sda_dir <= 1'b0;7'd1: begindata_r[7] <= sda_in;scl <= 1'b1;end7'd3: scl <= 1'b0;7'd5: begindata_r[6] <= sda_in ;scl <= 1'b1 ;end7'd7: scl <= 1'b0;7'd9: begindata_r[5] <= sda_in;scl <= 1'b1 ;end7'd11: scl <= 1'b0;7'd13: begindata_r[4] <= sda_in;scl <= 1'b1 ;end7'd15: scl <= 1'b0;7'd17: begindata_r[3] <= sda_in;scl <= 1'b1 ;end7'd19: scl <= 1'b0;7'd21: begindata_r[2] <= sda_in;scl <= 1'b1 ;end7'd23: scl <= 1'b0;7'd25: begindata_r[1] <= sda_in;scl <= 1'b1 ;end7'd27: scl <= 1'b0;7'd29: begindata_r[0] <= sda_in;scl <= 1'b1 ;end7'd31: scl <= 1'b0;7'd32: beginsda_dir <= 1'b1; sda_out <= 1'b1;end7'd33: scl <= 1'b1;7'd34: st_done <= 1'b1; //非应答7'd35: beginscl <= 1'b0;cnt <= 1'b0;i2c_data_r <= data_r;enddefault : ;endcaseendst_stop: begin //结束I2C操作case(cnt)7'd0: beginsda_dir <= 1'b1; //结束I2Csda_out <= 1'b0;end7'd1 : scl <= 1'b1;7'd3 : sda_out <= 1'b1;7'd15: st_done <= 1'b1;7'd16: begincnt <= 1'b0;i2c_done <= 1'b1; //向上层模块传递I2C结束信号enddefault : ;endcaseendendcaseend
end
EEPROM读写测试模块:
module e2prom_rw(input clk ,input rst_n ,output reg i2c_rh_wl,output reg i2c_exec,output reg [15:0] i2c_addr, //i2c器件内地址output reg [7:0] i2c_data_w,input [7:0] i2c_data_r,input i2c_done,input i2c_ack,output reg rw_done, //E2PROM读写测试完成 output reg rw_result //E2PROM读写测试结果 0:失败 1:成功 );//parameter define//EEPROM写数据需要添加间隔时间,读数据则不需要parameter WR_WAIT_TIME = 14'd50000; //5ms写入数据的间隔时间为5msparameter MAX_BYTE = 16'd256; //读写测试的字节个数//reg definereg [1:0] flow_cnt; //状态流控制reg [13:0] wait_cnt; //延时计数器//EEPROM读写测试,先写后读,并比较读出的值与输入的值是否一致always @(posedge clk or negedge rst_n)beginif(!rst_n) begin flow_cnt <= 2'b0;i2c_rh_wl <= 1'b0;i2c_exec <= 1'b0;i2c_addr <= 16'b0;i2c_data_w <= 8'b0;wait_cnt <= 14'b0;rw_done <= 1'b0;rw_result <= 1'b0;endelse begin i2c_exec <= 1'b0;rw_done <= 1'b0;case(flow_cnt)2'd0 : beginwait_cnt <= wait_cnt + 1'b1;if(wait_cnt == (WR_WAIT_TIME - 1'b1))beginwait_cnt <= 14'b0;if(i2c_addr == MAX_BYTE)begini2c_addr <= 16'b0;i2c_rh_wl <= 1'b1;flow_cnt <= 2'd2;endelse beginflow_cnt <= flow_cnt + 2'b1;i2c_exec <= 1'b1; //启动i2cendendend2'd1 : beginif(i2c_done == 1'b1)beginflow_cnt <= 2'd0;i2c_addr <= i2c_addr + 16'b1; //0-255i2c_data_w <= i2c_data_w + 8'b1; //0-255endend2'd2 : beginflow_cnt <= flow_cnt + 2'b1;i2c_exec <= 1'b1;end2'd3 : beginif(i2c_done == 1'b1)begin//读出的值错误或者i2c未应答,读写测试失败if((i2c_addr[7:0] != i2c_data_r) || (i2c_ack == 1'b1)) beginrw_done <= 1'b1;rw_result <=1'b0;endelse if(i2c_addr == (MAX_BYTE - 16'b1))begin //读写测试成功rw_done <= 1'b1;rw_result <=1'b1;endelse beginflow_cnt <= 2'd2;i2c_addr <= i2c_addr + 16'b1;endendenddefault : ;endcaseend
读写结果判定:
reg rw_done_flag; //读写测试完成标志
reg [16:0] led_cnt ; //led计数//*****************************************************
//** main code
//*****************************************************//读写测试完成标志rw_done_flag
always @(posedge clk or negedge rst_n) beginif(!rst_n)rw_done_flag <= 1'b0;else if(rw_done)rw_done_flag <= 1'b1;
end //错误标志为1时PL_LED0闪烁,否则PL_LED0常亮
always @(posedge clk or negedge rst_n) beginif(!rst_n) beginled_cnt <= 17'd0;led <= 1'b0;endelse beginif(rw_done_flag) beginif(rw_result) //读写测试正确led <= 1'b1; //led灯常亮else begin //读写测试错误led_cnt <= led_cnt + 17'd1;if(led_cnt == (L_TIME - 17'b1)) beginled_cnt <= 17'd0;led <= ~led; //led灯闪烁endelseled <= led;endendelseled <= 1'b0; //读写测试完成之前,led灯熄灭end
endendmodule
top:
module top_e2prom(input sys_clk , //系统时钟input sys_rst_n , //系统复位//eeprom interfaceoutput iic_scl , //eeprom的时钟线sclinout iic_sda , //eeprom的数据线sda//user interfaceoutput led //led显示eeprom读写测试结果
);//parameter define
parameter SLAVE_ADDR = 7'b1010000 ; //器件地址(SLAVE_ADDR)
parameter BIT_CTRL = 1'b1 ; //字地址位控制参数(16b/8b)
parameter CLK_FREQ = 26'd50_000_000 ; //i2c_dri模块的驱动时钟频率(CLK_FREQ)
parameter I2C_FREQ = 18'd250_000 ; //I2C的SCL时钟频率
parameter L_TIME = 17'd125_000 ; //led闪烁时间参数
parameter MAX_BYTE = 16'd256 ; //读写测试的字节个数//wire define
wire dri_clk ; //I2C操作时钟
wire i2c_exec ; //I2C触发控制
wire [15:0] i2c_addr ; //I2C操作地址
wire [ 7:0] i2c_data_w; //I2C写入的数据
wire i2c_done ; //I2C操作结束标志
wire i2c_ack ; //I2C应答标志 0:应答 1:未应答
wire i2c_rh_wl ; //I2C读写控制
wire [ 7:0] i2c_data_r; //I2C读出的数据
wire rw_done ; //E2PROM读写测试完成
wire rw_result ; //E2PROM读写测试结果 0:失败 1:成功 //*****************************************************
//** main code
//*****************************************************//e2prom读写测试模块
e2prom_rw #(.MAX_BYTE (MAX_BYTE ) //读写测试的字节个数
) u_e2prom_rw(.clk (dri_clk ), //时钟信号.rst_n (sys_rst_n ), //复位信号//i2c interface.i2c_exec (i2c_exec ), //I2C触发执行信号.i2c_rh_wl (i2c_rh_wl ), //I2C读写控制信号.i2c_addr (i2c_addr ), //I2C器件内地址.i2c_data_w (i2c_data_w), //I2C要写的数据.i2c_data_r (i2c_data_r), //I2C读出的数据.i2c_done (i2c_done ), //I2C一次操作完成.i2c_ack (i2c_ack ), //I2C应答标志 //user interface.rw_done (rw_done ), //E2PROM读写测试完成.rw_result (rw_result ) //E2PROM读写测试结果 0:失败 1:成功
);//i2c驱动模块
iic_dri #(.SLAVE_ADDR (SLAVE_ADDR), //EEPROM从机地址.CLK_FREQ (CLK_FREQ ), //模块输入的时钟频率.I2C_FREQ (I2C_FREQ ) //IIC_SCL的时钟频率
) u_i2c_dri(.clk (sys_clk ), .rst_n (sys_rst_n ), //i2c interface.i2c_exec (i2c_exec ), //I2C触发执行信号.bit_ctrl (BIT_CTRL ), //器件地址位控制(16b/8b).i2c_rh_wl (i2c_rh_wl ), //I2C读写控制信号.i2c_addr (i2c_addr ), //I2C器件内地址.i2c_data_w (i2c_data_w), //I2C要写的数据.i2c_data_r (i2c_data_r), //I2C读出的数据.i2c_done (i2c_done ), //I2C一次操作完成.i2c_ack (i2c_ack ), //I2C应答标志.scl (iic_scl ), //I2C的SCL时钟信号.sda (iic_sda ), //I2C的SDA信号//user interface.dri_clk (dri_clk ) //I2C操作时钟
);//led指示模块
rw_result_led #(.L_TIME(L_TIME ) //控制led闪烁时间
) u_rw_result_led(.clk (dri_clk ), .rst_n (sys_rst_n ), .rw_done (rw_done ), .rw_result (rw_result ),.led (led )
);endmodule
tb:时钟激励
`timescale 1ns/1ns //定义仿真时间单位1ns和仿真时间精度为1nsmodule tb_e2prom_top; //parameter define
parameter T = 20 ; //时钟周期为20ns
parameter SLAVE_ADDR = 7'b1010000 ; //器件地址(SLAVE_ADDR)
parameter BIT_CTRL = 1'b1 ; //字地址位控制参数(16b/8b)
parameter CLK_FREQ = 26'd50_000_000 ; //i2c_dri模块的驱动时钟频率(CLK_FREQ),周期就是20纳秒
parameter I2C_FREQ = 18'd250_000 ; //I2C的SCL时钟频率,周期是4us
parameter L_TIME = 17'd1 ; //led闪烁时间参数
parameter MAX_BYTE = 16'd3 ; //读写测试的字节个数//reg define
reg sys_clk ; //时钟信号
reg sys_rst_n; //复位信号//wire define
wire iic_scl;
wire iic_sda;
wire led ;//*****************************************************
//** main code
//*****************************************************//给输入信号初始值
initial beginsys_clk = 1'b0;sys_rst_n = 1'b0; //复位#(T+1) sys_rst_n = 1'b1; //在第21ns的时候复位信号信号拉高
end//50Mhz的时钟,周期则为1/50Mhz=20ns,所以每10ns,电平取反一次
always #(T/2) sys_clk = ~sys_clk;//将SDA数据线上拉
pullup(iic_sda);//例化e2prom_top模块
top_e2prom #(.MAX_BYTE (MAX_BYTE ) //读写测试的字节个数
) u_top_e2prom(.sys_clk (sys_clk ), //系统时钟.sys_rst_n (sys_rst_n), //系统复位//eeprom interface.iic_scl (iic_scl ), //eeprom的时钟线scl.iic_sda (iic_sda ), //eeprom的数据线sda//user interface.led (led ) //led显示
);//例化e2prom仿真模型
EEPROM_AT24C64 u_EEPROM_AT24C64(.scl (iic_scl),.sda (iic_sda));endmodule
上拉电阻:
wire abc;
pullup(abc);
assign abc = enable ? 1’b0 : 1’bz;
enable为1的时候 abc信号为0
enable 为0的时候 assign语句的输出为高阻,但是因为pullup了abc,所以abc的值为1
EEPROM仿真模型:
`timescale 1ns/1ns
`define timeslice 1250
module EEPROM_AT24C64(
scl,
sda
);
input scl;
inout sda;
reg out_flag;
reg[7:0] memory[8191:0];
reg[12:0]address;
reg[7:0]memory_buf;
reg[7:0]sda_buf;
reg[7:0]shift;
reg[7:0]addr_byte_h;
reg[7:0]addr_byte_l;
reg[7:0]ctrl_byte;
reg[1:0]State;
integer i;
//---------------------------
parameter
r7 = 8'b1010_1111, w7 = 8'b1010_1110, //main7
r6 = 8'b1010_1101, w6 = 8'b1010_1100, //main6
r5 = 8'b1010_1011, w5 = 8'b1010_1010, //main5
r4 = 8'b1010_1001, w4 = 8'b1010_1000, //main4
r3 = 8'b1010_0111, w3 = 8'b1010_0110, //main3
r2 = 8'b1010_0101, w2 = 8'b1010_0100, //main2
r1 = 8'b1010_0011, w1 = 8'b1010_0010, //main1
r0 = 8'b1010_0001, w0 = 8'b1010_0000; //main0
assign sda = (out_flag == 1) ? sda_buf[7] : 1'bz;initial
begin
addr_byte_h = 0;
addr_byte_l = 0;
ctrl_byte = 0;
out_flag = 0;
sda_buf = 0;
State = 2'b00;
memory_buf = 0;
address = 0;
shift = 0;
for(i=0;i<=8191;i=i+1)
memory[i] = 0;
end
always@(negedge sda)
begin
if(scl == 1)
begin
State = State + 1;
if(State == 2'b11)
disable write_to_eeprom;
end
endalways@(posedge sda)
begin
if(scl == 1)
stop_W_R;
else
begin
casex(State)
2'b01:begin
read_in;
if(ctrl_byte == w7 || ctrl_byte == w6
|| ctrl_byte == w5 || ctrl_byte == w4
|| ctrl_byte == w3 || ctrl_byte == w2
|| ctrl_byte == w1 || ctrl_byte == w0)
begin
State = 2'b10;
write_to_eeprom;
end
else
State = 2'b00;
end
2'b11:
read_from_eeprom;
default:
State = 2'b00;
endcase
end
end
task stop_W_R;
begin
State = 2'b00;
addr_byte_h = 0;
addr_byte_l = 0;
ctrl_byte = 0;
out_flag = 0;
sda_buf = 0;
end
endtasktask read_in;
begin
shift_in(ctrl_byte);
shift_in(addr_byte_h);
shift_in(addr_byte_l);
end
endtasktask write_to_eeprom;
begin
shift_in(memory_buf);
address = {addr_byte_h[4:0], addr_byte_l};
memory[address] = memory_buf;
State = 2'b00;
end
endtasktask read_from_eeprom;
begin
shift_in(ctrl_byte);
if(ctrl_byte == r7 || ctrl_byte == w6
|| ctrl_byte == r5 || ctrl_byte == r4
|| ctrl_byte == r3 || ctrl_byte == r2
|| ctrl_byte == r1 || ctrl_byte == r0)
begin
address = {addr_byte_h[4:0], addr_byte_l};
sda_buf = memory[address];
shift_out;
State = 2'b00;
end
end
endtask
task shift_in;
output[7:0]shift;
begin
@(posedge scl) shift[7] = sda;
@(posedge scl) shift[6] = sda;
@(posedge scl) shift[5] = sda;
@(posedge scl) shift[4] = sda;
@(posedge scl) shift[3] = sda;
@(posedge scl) shift[2] = sda;
@(posedge scl) shift[1] = sda;
@(posedge scl) shift[0] = sda;
@(negedge scl)
begin
#(`timeslice);
out_flag = 1;
sda_buf = 0;
end
@(negedge scl)
begin
#(`timeslice-250);
out_flag = 0;
end
end
endtask
task shift_out;
begin
out_flag = 1;
for(i=6; i>=0; i=i-1)
begin
@(negedge scl);
#`timeslice;
sda_buf = sda_buf << 1;
end
@(negedge scl) #`timeslice sda_buf[7] = 1;
@(negedge scl) #`timeslice out_flag = 0;
end
endtask
endmodule
i2c状态机的编写:
读数据:
i2c第一次写入地址0的字节数据0:
i2c第二次写入地址1的字节数据1:
i2c第三次写入地址2的字节数据2:
读数据的时候sda总线由输入变为输出状态,需要给从机一个非应答信号,不能给应答信号!给应答信号就不再是任意地址读,就变成了从某个地址连续读,不符合本次设计的任意地址读模式:
两个毛刺信号:(由EEPROM仿真模型引起的)
上板验证:
胡萝卜鸡...