源码地址
https://gitee.com/rathon/apollof429-v2.git
还有一些移植细节可以参考我之前写的一些博客
硬件平台:
正点原子APOLLOF429V2开发板
开发环境
stm32cubemx6.2.0版本,用的库为STM32Cube_FW_F4_V1.26.2,开发软件为STM32cubeide
时钟配置
串口配置
非gnu版串口重定向
在main.c或者.h中添加以下代码进行重定向
#include <stdio.h>/* USER CODE BEGIN PFP */
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif
PUTCHAR_PROTOTYPE
{HAL_UART_Transmit(&huart1 , (uint8_t *)&ch, 1, 0xFFFF);return ch;
}
gnu版串口重定向
当配置了–gnu时,需要用以下的重定向代码
#ifdef __GNUC__/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printfset to 'Yes') calls __io_putchar() *///#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)//comment_20190422: soem needs --gnu compile option, #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)#else#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
/*** @brief Retargets the C library printf function to the USART.* @param None* @retval None*/
PUTCHAR_PROTOTYPE
{/* Place your implementation of fputc here *//* e.g. write a character to the EVAL_COM1 and Loop until the end of transmission */HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, 0xFFFF);return ch;
}
定时器配置
主站系统时钟
将TIM2定时器配置成1s周期中断,主频1Mhz,这样CNT对应的单位刚好是1us。
打开定时器中断
HAL_TIM_Base_Start_IT(&htim2);
配置一个IO用于示波器抓取定时器时钟是否准确,这里选用PB0。(非必须)
uint32_t time_s ,time_ms, time_us;
extern int dorun;
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{if (htim->Instance == TIM2){time_s++;}
}
uint32_t GetSec(void)
{return time_s;
}uint32_t GetUSec(void)
{time_us = (TIM2->CNT)%1000000;return time_us;
}
主站DC定时器中断函数
将TIM5定时器配置成1ms周期中断,主频1Mhz,这样CNT对应的单位刚好是1us。
打开定时器中断
HAL_TIM_Base_Start_IT(&htim5);
配置一个IO用于示波器抓取定时器时钟是否准确,这里选用PB0。(非必须)
uint32_t time_s ,time_ms, time_us;
extern int dorun;
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{if (htim->Instance == TIM2){time_s++;}else if (htim->Instance == TIM5){HAL_GPIO_TogglePin(GPIOB, GPIO_PIN_0);if(dorun==1){ecat_loop();}}else{}
}
uint32_t GetSec(void)
{return time_s;
}uint32_t GetUSec(void)
{time_us = (TIM2->CNT)%1000000;return time_us;
}
osal相关文件
osal是soem里的文件,里面有个延时相关的函数(因为我不喜欢正点原子提供的SYSTEM/delay文件夹里的函数),由于后面的PCF8574和IIC驱动里有延时调用,因此在这里我就先移植“osal”。
osal_def.h
/** Licensed under the GNU General Public License version 2 with exceptions. See* LICENSE file in the project root for full license information*/#ifndef _osal_defs_
#define _osal_defs_#ifdef __cplusplus
extern "C"
{
#endif// define if debug printf is needed
//#define EC_DEBUG#ifdef EC_DEBUG
#define EC_PRINT printf
#else
#define EC_PRINT(...) do {} while (0)
#endif#ifndef PACKED
#define PACKED_BEGIN
#define PACKED __attribute__((__packed__))
#define PACKED_END
#endif#define OSAL_THREAD_HANDLE task_t *
#define OSAL_THREAD_FUNC void
#define OSAL_THREAD_FUNC_RT void#ifdef __cplusplus
}
#endif#endif
osal.h
/** Licensed under the GNU General Public License version 2 with exceptions. See* LICENSE file in the project root for full license information*/#ifndef _osal_
#define _osal_#ifdef __cplusplus
extern "C"
{
#endif#include "osal_defs.h"
#include <stdint.h>
#include <stdbool.h>
/* General types */
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
typedef uint8_t boolean;
typedef int8_t int8;
typedef int16_t int16;
typedef int32_t int32;
typedef uint8_t uint8;
typedef uint16_t uint16;
typedef uint32_t uint32;
typedef int64_t int64;
typedef uint64_t uint64;
typedef float float32;
typedef double float64;typedef struct
{uint32 sec; /*< Seconds elapsed since the Epoch (Jan 1, 1970) */uint32 usec; /*< Microseconds elapsed since last second boundary */
} ec_timet;typedef struct
{uint32 tv_sec;uint32 tv_usec;
}timeval;typedef struct
{int tz_minuteswest; /* 格林尼治时间往西方的时差,以分钟为单位 */int tz_dsttime; /* 日光节约时间的修正方式 */
}timezone;typedef struct osal_timer
{ec_timet stop_time;
} osal_timert;void osal_timer_start(osal_timert * self, uint32 timeout_us);
boolean osal_timer_is_expired(osal_timert * self);
int osal_usleep(uint32 usec);
ec_timet osal_current_time(void);
void osal_time_diff(ec_timet *start, ec_timet *end, ec_timet *diff);
int osal_thread_create(void *thandle, int stacksize, void *func, void *param);
int osal_thread_create_rt(void *thandle, int stacksize, void *func, void *param);#ifdef __cplusplus
}
#endif#endif
osal.c
/** Licensed under the GNU General Public License version 2 with exceptions. See* LICENSE file in the project root for full license information*/
#include "osal.h"
#include "tim.h"
#include <stdlib.h>#define timercmp(a, b, CMP) \(((a)->tv_sec == (b)->tv_sec) ? \((a)->tv_usec CMP (b)->tv_usec) : \((a)->tv_sec CMP (b)->tv_sec))
#define timeradd(a, b, result) \do { \(result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \(result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \if ((result)->tv_usec >= 1000000) \{ \++(result)->tv_sec; \(result)->tv_usec -= 1000000; \} \} while (0)
#define timersub(a, b, result) \do { \(result)->tv_sec = (a)->tv_sec - (b)->tv_sec; \(result)->tv_usec = (a)->tv_usec - (b)->tv_usec; \if ((result)->tv_usec < 0) { \--(result)->tv_sec; \(result)->tv_usec += 1000000; \} \} while (0)#define USECS_PER_SEC 1000000
#define USECS_PER_TICK (USECS_PER_SEC / CFG_TICKS_PER_SECOND)/* Workaround for rt-labs defect 776.* Default implementation of udelay() didn't work correctly when tick was* shorter than one millisecond.*/
void udelay (uint32_t us)
{osal_timert qtime;osal_timer_start(&qtime, us);while(!osal_timer_is_expired(&qtime));
}int gettimeofday(timeval *tp, void *tzp)
{uint32_t sec = GetSec();uint32_t us = GetUSec();tp->tv_usec = us;tp->tv_sec = sec;return 0;
}int osal_usleep (uint32 usec)
{udelay(usec);return 0;
}int osal_gettimeofday(timeval *tv, timezone *tz)
{return gettimeofday(tv, tz);
}ec_timet osal_current_time (void)
{timeval current_time;ec_timet return_value;gettimeofday (¤t_time, 0);return_value.sec = current_time.tv_sec;return_value.usec = current_time.tv_usec;return return_value;
}void osal_timer_start (osal_timert * self, uint32 timeout_usec)
{timeval start_time;timeval timeout;timeval stop_time;gettimeofday (&start_time, 0);timeout.tv_sec = timeout_usec / USECS_PER_SEC;timeout.tv_usec = timeout_usec % USECS_PER_SEC;timeradd (&start_time, &timeout, &stop_time);self->stop_time.sec = stop_time.tv_sec;self->stop_time.usec = stop_time.tv_usec;
}boolean osal_timer_is_expired (osal_timert * self)
{timeval current_time;timeval stop_time;int is_not_yet_expired;gettimeofday (¤t_time, 0);stop_time.tv_sec = self->stop_time.sec;stop_time.tv_usec = self->stop_time.usec;is_not_yet_expired = timercmp (¤t_time, &stop_time, <);return is_not_yet_expired == false;
}void *osal_malloc(size_t size)
{return malloc(size);
}void osal_free(void *ptr)
{free(ptr);
}int osal_thread_create(void *thandle, int stacksize, void *func, void *param)
{
// thandle = task_spawn ("worker", func, 6,stacksize, param);
// if(!thandle)
// {
// return 0;
// }return 1;
}int osal_thread_create_rt(void *thandle, int stacksize, void *func, void *param)
{
// thandle = task_spawn ("worker_rt", func, 15 ,stacksize, param);
// if(!thandle)
// {
// return 0;
// }return 1;
}
添加PCF8574和IIC驱动
由于正点原子的阿波罗开发板中,phy芯片的ETH_RESET引脚由PCF8574芯片控制,因此得从正点原子的代码中copy来以下驱动文件。
由于正点原子这种独特的设计,导致phy的复位引脚的代码变得很复杂。
myiic.h
/******************************************************************************************************* @file myiic.h* @author 正点原子团队(ALIENTEK)* @version V1.0* @date 2022-04-20* @brief IIC 驱动代码* @license Copyright (c) 2020-2032, 广州市星翼电子科技有限公司***************************************************************************************************** @attention** 实验平台:正点原子 阿波罗 F429开发板* 在线视频:www.yuanzige.com* 技术论坛:www.openedv.com* 公司网址:www.alientek.com* 购买地址:openedv.taobao.com** 修改说明* V1.0 20220420* 第一次发布******************************************************************************************************/#ifndef __MYIIC_H
#define __MYIIC_H
#include "stm32f4xx_hal.h"
#include "osal.h"
/******************************************************************************************/
/* 引脚 定义 */#define IIC_SCL_GPIO_PORT GPIOH
#define IIC_SCL_GPIO_PIN GPIO_PIN_4
#define IIC_SCL_GPIO_CLK_ENABLE() do{ __HAL_RCC_GPIOH_CLK_ENABLE(); }while(0) /* PH口时钟使能 */#define IIC_SDA_GPIO_PORT GPIOH
#define IIC_SDA_GPIO_PIN GPIO_PIN_5
#define IIC_SDA_GPIO_CLK_ENABLE() do{ __HAL_RCC_GPIOH_CLK_ENABLE(); }while(0) /* PH口时钟使能 *//******************************************************************************************/
/* IO操作 */#define IIC_SCL(x) do{ x ? \HAL_GPIO_WritePin(IIC_SCL_GPIO_PORT, IIC_SCL_GPIO_PIN, GPIO_PIN_SET) : \HAL_GPIO_WritePin(IIC_SCL_GPIO_PORT, IIC_SCL_GPIO_PIN, GPIO_PIN_RESET); \}while(0) /* SCL */#define IIC_SDA(x) do{ x ? \HAL_GPIO_WritePin(IIC_SDA_GPIO_PORT, IIC_SDA_GPIO_PIN, GPIO_PIN_SET) : \HAL_GPIO_WritePin(IIC_SDA_GPIO_PORT, IIC_SDA_GPIO_PIN, GPIO_PIN_RESET); \}while(0) /* SDA */#define IIC_READ_SDA HAL_GPIO_ReadPin(IIC_SDA_GPIO_PORT, IIC_SDA_GPIO_PIN) /* 读取SDA *//******************************************************************************************/
/* IIC所有操作函数 */void iic_init(void); /* 初始化IIC的IO口 */
void iic_start(void); /* 发送IIC开始信号 */
void iic_stop(void); /* 发送IIC停止信号 */
void iic_ack(void); /* IIC发送ACK信号 */
void iic_nack(void); /* IIC不发送ACK信号 */
uint8_t iic_wait_ack(void); /* IIC等待ACK信号 */
void iic_send_byte(uint8_t data); /* IIC发送一个字节 */
uint8_t iic_read_byte(unsigned char ack); /* IIC读取一个字节 */#endif
myiic.c
/******************************************************************************************************* @file myiic.c* @author 正点原子团队(ALIENTEK)* @version V1.0* @date 2022-04-20* @brief IIC 驱动代码* @license Copyright (c) 2020-2032, 广州市星翼电子科技有限公司***************************************************************************************************** @attention** 实验平台:正点原子 阿波罗 F429开发板* 在线视频:www.yuanzige.com* 技术论坛:www.openedv.com* 公司网址:www.alientek.com* 购买地址:openedv.taobao.com** 修改说明* V1.0 20220420* 第一次发布******************************************************************************************************/#include "myiic.h"/*** @brief 初始化IIC* @param 无* @retval 无*/
void iic_init(void)
{GPIO_InitTypeDef gpio_init_struct;IIC_SCL_GPIO_CLK_ENABLE(); /* SCL引脚时钟使能 */IIC_SDA_GPIO_CLK_ENABLE(); /* SDA引脚时钟使能 */gpio_init_struct.Pin = IIC_SCL_GPIO_PIN;gpio_init_struct.Mode = GPIO_MODE_OUTPUT_PP; /* 推挽输出 */gpio_init_struct.Pull = GPIO_PULLUP; /* 上拉 */gpio_init_struct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; /* 快速 */HAL_GPIO_Init(IIC_SCL_GPIO_PORT, &gpio_init_struct); /* SCL引脚初始化 *//* SDA引脚开漏输出,上拉, 这样就不用再设置IO方向了,开漏输出的时候(=1), 也可以读取外部信号的高低电平 */gpio_init_struct.Pin = IIC_SDA_GPIO_PIN;gpio_init_struct.Mode = GPIO_MODE_OUTPUT_OD; /* 开漏输出 */HAL_GPIO_Init(IIC_SDA_GPIO_PORT, &gpio_init_struct); /* SDA引脚初始化 */iic_stop(); /* 停止总线上所有设备 */
}/*** @brief IIC延时函数,用于控制IIC读写速度* @param 无* @retval 无*/
static void iic_delay(void)
{osal_usleep(2); /* 2us的延时, 读写速度在250Khz以内 */
}/*** @brief 产生IIC起始信号* @param 无* @retval 无*/
void iic_start(void)
{IIC_SDA(1);IIC_SCL(1);iic_delay();IIC_SDA(0); /* START信号: 当SCL为高时, SDA从高变成低, 表示起始信号 */iic_delay();IIC_SCL(0); /* 钳住I2C总线,准备发送或接收数据 */iic_delay();
}/*** @brief 产生IIC停止信号* @param 无* @retval 无*/
void iic_stop(void)
{IIC_SDA(0); /* STOP信号: 当SCL为高时, SDA从低变成高, 表示停止信号 */iic_delay();IIC_SCL(1);iic_delay();IIC_SDA(1); /* 发送I2C总线结束信号 */iic_delay();
}/*** @brief 等待应答信号到来* @param 无* @retval 1,接收应答失败* 0,接收应答成功*/
uint8_t iic_wait_ack(void)
{uint8_t waittime = 0;uint8_t rack = 0;IIC_SDA(1); /* 主机释放SDA线(此时外部器件可以拉低SDA线) */iic_delay();IIC_SCL(1); /* SCL=1, 此时从机可以返回ACK */iic_delay();while (IIC_READ_SDA) /* 等待应答 */{waittime++;if (waittime > 250){iic_stop();rack = 1;break;}}IIC_SCL(0); /* SCL=0, 结束ACK检查 */iic_delay();return rack;
}/*** @brief 产生ACK应答* @param 无* @retval 无*/
void iic_ack(void)
{IIC_SDA(0); /* SCL 0 -> 1 时 SDA = 0,表示应答 */iic_delay();IIC_SCL(1); /* 产生一个时钟 */iic_delay();IIC_SCL(0);iic_delay();IIC_SDA(1); /* 主机释放SDA线 */iic_delay();
}/*** @brief 不产生ACK应答* @param 无* @retval 无*/
void iic_nack(void)
{IIC_SDA(1); /* SCL 0 -> 1 时 SDA = 1,表示不应答 */iic_delay();IIC_SCL(1); /* 产生一个时钟 */iic_delay();IIC_SCL(0);iic_delay();
}/*** @brief IIC发送一个字节* @param data: 要发送的数据* @retval 无*/
void iic_send_byte(uint8_t data)
{uint8_t t;for (t = 0; t < 8; t++){IIC_SDA((data & 0x80) >> 7); /* 高位先发送 */iic_delay();IIC_SCL(1);iic_delay();IIC_SCL(0);data <<= 1; /* 左移1位,用于下一次发送 */}IIC_SDA(1); /* 发送完成, 主机释放SDA线 */
}/*** @brief IIC读取一个字节* @param ack: ack=1时,发送ack; ack=0时,发送nack* @retval 接收到的数据*/
uint8_t iic_read_byte(uint8_t ack)
{uint8_t i, receive = 0;for (i = 0; i < 8; i++ ) /* 接收1个字节数据 */{receive <<= 1; /* 高位先输出,所以先收到的数据位要左移 */IIC_SCL(1);iic_delay();if (IIC_READ_SDA){receive++;}IIC_SCL(0);iic_delay();}if (!ack){iic_nack(); /* 发送nACK */}else{iic_ack(); /* 发送ACK */}return receive;
}
pcf8574.h
/******************************************************************************************************* @file pcf8574.h* @author 正点原子团队(ALIENTEK)* @version V1.0* @date 2022-04-20* @brief PCF8574 驱动代码* @license Copyright (c) 2020-2032, 广州市星翼电子科技有限公司***************************************************************************************************** @attention** 实验平台:正点原子 阿波罗 F429开发板* 在线视频:www.yuanzige.com* 技术论坛:www.openedv.com* 公司网址:www.alientek.com* 购买地址:openedv.taobao.com** 修改说明* V1.0 20220420* 第一次发布******************************************************************************************************/#ifndef __PCF8574_H
#define __PCF8574_H#include "myiic.h"/******************************************************************************************/
/* 引脚 定义 */#define PCF8574_GPIO_PORT GPIOB
#define PCF8574_GPIO_PIN GPIO_PIN_12
#define PCF8574_GPIO_CLK_ENABLE() do{ __HAL_RCC_GPIOB_CLK_ENABLE(); }while(0) /* PB口时钟使能 *//******************************************************************************************/#define PCF8574_INT HAL_GPIO_ReadPin(PCF8574_GPIO_PORT, PCF8574_GPIO_PIN) /* PCF8574 INT脚 */#define PCF8574_ADDR 0X40 /* PCF8574地址(左移了一位) *//* PCF8574各个IO的功能 */
#define BEEP_IO 0 /* 蜂鸣器控制引脚 P0 */
#define AP_INT_IO 1 /* AP3216C中断引脚 P1 */
#define DCMI_PWDN_IO 2 /* DCMI的电源控制引脚 P2 */
#define USB_PWR_IO 3 /* USB电源控制引脚 P3 */
#define EX_IO 4 /* 扩展IO,自定义使用 P4 */
#define MPU_INT_IO 5 /* SH3001中断引脚 P5 */
#define RS485_RE_IO 6 /* RS485_RE引脚 P6 */
#define ETH_RESET_IO 7 /* 以太网复位引脚 P7 *//******************************************************************************************/uint8_t pcf8574_init(void);
uint8_t pcf8574_read_byte(void);
void pcf8574_write_byte(uint8_t data);
void pcf8574_write_bit(uint8_t bit, uint8_t sta);
uint8_t pcf8574_read_bit(uint8_t bit);#endif
pcf8574.c
/******************************************************************************************************* @file pcf8574.c* @author 正点原子团队(ALIENTEK)* @version V1.0* @date 2022-04-20* @brief PCF8574 驱动代码* @license Copyright (c) 2020-2032, 广州市星翼电子科技有限公司***************************************************************************************************** @attention** 实验平台:正点原子 阿波罗 F429开发板* 在线视频:www.yuanzige.com* 技术论坛:www.openedv.com* 公司网址:www.alientek.com* 购买地址:openedv.taobao.com** 修改说明* V1.0 20220420* 第一次发布******************************************************************************************************/#include "pcf8574.h"/*** @brief 初始化PCF8574* @param 无* @retval 0, 成功;1, 失败;*/
uint8_t pcf8574_init(void)
{uint8_t temp = 0;GPIO_InitTypeDef gpio_init_struct;PCF8574_GPIO_CLK_ENABLE(); /* 使能GPIOB时钟 */gpio_init_struct.Pin = PCF8574_GPIO_PIN; /* PB12 */gpio_init_struct.Mode = GPIO_MODE_INPUT; /* 输入 */gpio_init_struct.Pull = GPIO_PULLUP; /* 上拉 */gpio_init_struct.Speed = GPIO_SPEED_HIGH; /* 高速 */HAL_GPIO_Init(PCF8574_GPIO_PORT, &gpio_init_struct); /* 初始化IO */iic_init(); /* IIC初始化 *//* 检查PCF8574是否在位 */iic_start();iic_send_byte(PCF8574_ADDR); /* 写地址 */temp = iic_wait_ack(); /* 等待应答,通过判断是否有ACK应答,来判断PCF8574的状态 */iic_stop(); /* 产生一个停止条件 */pcf8574_write_byte(0XFF); /* 默认情况下所有IO输出高电平 */return temp;
}/*** @brief 读取PCF8574的8位IO值* @param 无* @retval 读到的数据*/
uint8_t pcf8574_read_byte(void)
{ uint8_t temp = 0;iic_start();iic_send_byte(PCF8574_ADDR | 0X01); /* 进入接收模式 */iic_wait_ack();temp = iic_read_byte(0);iic_stop(); /* 产生一个停止条件 */return temp;
}/*** @brief 向PCF8574写入8位IO值* @param data : 要写入的数据* @retval 无*/
void pcf8574_write_byte(uint8_t data)
{iic_start(); iic_send_byte(PCF8574_ADDR | 0X00); /* 发送器件地址0X40,写数据 */iic_wait_ack();iic_send_byte(data); /* 发送字节 */iic_wait_ack();iic_stop(); /* 产生一个停止条件 */osal_usleep(10000);
}/*** @brief 设置PCF8574某个IO的高低电平* @param bit : 要设置的IO编号,0~7* @param sta : IO的状态;0或1* @retval 无*/
void pcf8574_write_bit(uint8_t bit, uint8_t sta)
{uint8_t data;data = pcf8574_read_byte(); /* 先读出原来的设置 */if (sta == 0){data &= ~(1 << bit);}else{data |= 1 << bit;}pcf8574_write_byte(data); /* 写入新的数据 */
}/*** @brief 读取PCF8574的某个IO的值* @param bit : 要读取的IO编号, 0~7* @retval 此IO口的值(状态, 0/1)*/
uint8_t pcf8574_read_bit(uint8_t bit)
{uint8_t data;data = pcf8574_read_byte(); /* 先读取这个8位IO的值 */if (data & (1 << bit)){return 1;}else {return 0; }
}
以太网外设
STM32CUBEMX配置
此时会自动生成eth.c文件
eth.h
/********************************************************************************* @file eth.h* @brief This file contains all the function prototypes for* the eth.c file******************************************************************************* @attention** <h2><center>© Copyright (c) 2024 STMicroelectronics.* All rights reserved.</center></h2>** This software component is licensed by ST under BSD 3-Clause license,* the "License"; You may not use this file except in compliance with the* License. You may obtain a copy of the License at:* opensource.org/licenses/BSD-3-Clause********************************************************************************/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __ETH_H__
#define __ETH_H__#ifdef __cplusplus
extern "C" {
#endif/* Includes ------------------------------------------------------------------*/
#include "main.h"/* USER CODE BEGIN Includes *//* USER CODE END Includes */extern ETH_HandleTypeDef heth;/* USER CODE BEGIN Private defines *//* USER CODE END Private defines */void MX_ETH_Init(void);/* USER CODE BEGIN Prototypes */
/* PHY芯片寄存器映射表 */
#define ETH_CHIP_BCR ((uint16_t)0x0000U)
#define ETH_CHIP_BSR ((uint16_t)0x0001U)
#define PHY_REGISTER2 ((uint16_t)0x0002U)
#define PHY_REGISTER3 ((uint16_t)0x0003U)/* 操作SCR寄存器的值(一般不需要修改) */
#define ETH_CHIP_BCR_SOFT_RESET ((uint16_t)0x8000U)
#define ETH_CHIP_BCR_LOOPBACK ((uint16_t)0x4000U)
#define ETH_CHIP_BCR_SPEED_SELECT ((uint16_t)0x2000U)
#define ETH_CHIP_BCR_AUTONEGO_EN ((uint16_t)0x1000U)
#define ETH_CHIP_BCR_POWER_DOWN ((uint16_t)0x0800U)
#define ETH_CHIP_BCR_ISOLATE ((uint16_t)0x0400U)
#define ETH_CHIP_BCR_RESTART_AUTONEGO ((uint16_t)0x0200U)
#define ETH_CHIP_BCR_DUPLEX_MODE ((uint16_t)0x0100U) /* 操作BSR寄存器的值(一般不需要修改) */
#define ETH_CHIP_BSR_100BASE_T4 ((uint16_t)0x8000U)
#define ETH_CHIP_BSR_100BASE_TX_FD ((uint16_t)0x4000U)
#define ETH_CHIP_BSR_100BASE_TX_HD ((uint16_t)0x2000U)
#define ETH_CHIP_BSR_10BASE_T_FD ((uint16_t)0x1000U)
#define ETH_CHIP_BSR_10BASE_T_HD ((uint16_t)0x0800U)
#define ETH_CHIP_BSR_100BASE_T2_FD ((uint16_t)0x0400U)
#define ETH_CHIP_BSR_100BASE_T2_HD ((uint16_t)0x0200U)
#define ETH_CHIP_BSR_EXTENDED_STATUS ((uint16_t)0x0100U)
#define ETH_CHIP_BSR_AUTONEGO_CPLT ((uint16_t)0x0020U)
#define ETH_CHIP_BSR_REMOTE_FAULT ((uint16_t)0x0010U)
#define ETH_CHIP_BSR_AUTONEGO_ABILITY ((uint16_t)0x0008U)
#define ETH_CHIP_BSR_LINK_STATUS ((uint16_t)0x0004U)
#define ETH_CHIP_BSR_JABBER_DETECT ((uint16_t)0x0002U)
#define ETH_CHIP_BSR_EXTENDED_CAP ((uint16_t)0x0001U)
/* PHY芯片进程状态 */
#define ETH_CHIP_STATUS_READ_ERROR ((int32_t)-5)
#define ETH_CHIP_STATUS_WRITE_ERROR ((int32_t)-4)
#define ETH_CHIP_STATUS_ADDRESS_ERROR ((int32_t)-3)
#define ETH_CHIP_STATUS_RESET_TIMEOUT ((int32_t)-2)
#define ETH_CHIP_STATUS_ERROR ((int32_t)-1)
#define ETH_CHIP_STATUS_OK ((int32_t) 0)
#define ETH_CHIP_STATUS_LINK_DOWN ((int32_t) 1)
#define ETH_CHIP_STATUS_100MBITS_FULLDUPLEX ((int32_t) 2)
#define ETH_CHIP_STATUS_100MBITS_HALFDUPLEX ((int32_t) 3)
#define ETH_CHIP_STATUS_10MBITS_FULLDUPLEX ((int32_t) 4)
#define ETH_CHIP_STATUS_10MBITS_HALFDUPLEX ((int32_t) 5)
#define ETH_CHIP_STATUS_AUTONEGO_NOTDONE ((int32_t) 6)void PhyReset(void);
void PhyEventHandler(void);
void PhyTick(void);
#define LAN8720 0
#define SR8201F 1
#define YT8512C 2
#define RTL8201 3int EthRdPacket(void* pBuff);
int EthWrPacket(void* pBuff, int Len);
/* USER CODE END Prototypes */#ifdef __cplusplus
}
#endif#endif /* __ETH_H__ *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
eth.c
/********************************************************************************* @file eth.c* @brief This file provides code for the configuration* of the ETH instances.******************************************************************************* @attention** <h2><center>© Copyright (c) 2024 STMicroelectronics.* All rights reserved.</center></h2>** This software component is licensed by ST under BSD 3-Clause license,* the "License"; You may not use this file except in compliance with the* License. You may obtain a copy of the License at:* opensource.org/licenses/BSD-3-Clause********************************************************************************//* Includes ------------------------------------------------------------------*/
#include "eth.h"/* USER CODE BEGIN 0 */
#include <stdio.h>
#include <string.h>
#include "osal.h"
#include "pcf8574.h"
#if defined ( __ICCARM__ ) /*!< IAR Compiler */#pragma data_alignment=4
#endif
__ALIGN_BEGIN ETH_DMADescTypeDef DMARxDscrTab[ETH_RXBUFNB] __ALIGN_END;/* Ethernet Rx MA Descriptor */#if defined ( __ICCARM__ ) /*!< IAR Compiler */#pragma data_alignment=4
#endif
__ALIGN_BEGIN ETH_DMADescTypeDef DMATxDscrTab[ETH_TXBUFNB] __ALIGN_END;/* Ethernet Tx DMA Descriptor */#if defined ( __ICCARM__ ) /*!< IAR Compiler */#pragma data_alignment=4
#endif
__ALIGN_BEGIN uint8_t Rx_Buff[ETH_RXBUFNB][ETH_RX_BUF_SIZE] __ALIGN_END; /* Ethernet Receive Buffer */#if defined ( __ICCARM__ ) /*!< IAR Compiler */#pragma data_alignment=4
#endif
__ALIGN_BEGIN uint8_t Tx_Buff[ETH_TXBUFNB][ETH_TX_BUF_SIZE] __ALIGN_END; /* Ethernet Transmit Buffer */#define YT8512C_AND_RTL8201BL_PHYREGISTER2 0x0000
#define SR8201F_PHYREGISTER2 0x001C
#define LAN8720A_PHYREGISTER2 0x0007
uint32_t PHY_TYPE;
uint16_t ETH_CHIP_PHYSCSR;
uint16_t ETH_CHIP_SPEED_STATUS;
uint16_t ETH_CHIP_DUPLEX_STATUS;
/* USER CODE END 0 */ETH_HandleTypeDef heth;/* ETH init function */
void MX_ETH_Init(void)
{/* USER CODE BEGIN ETH_Init 0 *//* USER CODE END ETH_Init 0 *//* USER CODE BEGIN ETH_Init 1 *//* USER CODE END ETH_Init 1 */heth.Instance = ETH;heth.Init.AutoNegotiation = ETH_AUTONEGOTIATION_ENABLE;heth.Init.Speed = ETH_SPEED_100M;heth.Init.DuplexMode = ETH_MODE_FULLDUPLEX;heth.Init.PhyAddress = LAN8742A_PHY_ADDRESS;heth.Init.MACAddr[0] = 0x00;heth.Init.MACAddr[1] = 0x80;heth.Init.MACAddr[2] = 0xE1;heth.Init.MACAddr[3] = 0x00;heth.Init.MACAddr[4] = 0x00;heth.Init.MACAddr[5] = 0x00;heth.Init.RxMode = ETH_RXPOLLING_MODE;heth.Init.ChecksumMode = ETH_CHECKSUM_BY_HARDWARE;heth.Init.MediaInterface = ETH_MEDIA_INTERFACE_RMII;/* USER CODE BEGIN MACADDRESS */heth.Init.PhyAddress = 0U;/* USER CODE END MACADDRESS */if (HAL_ETH_Init(&heth) != HAL_OK){Error_Handler();}/* USER CODE BEGIN ETH_Init 2 *//* Initialize Tx Descriptors list: Chain Mode */HAL_ETH_DMATxDescListInit(&heth, DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);/* Initialize Rx Descriptors list: Chain Mode */HAL_ETH_DMARxDescListInit(&heth, DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);/* Enable MAC and DMA transmission and reception */HAL_ETH_Start(&heth);/* USER CODE END ETH_Init 2 */}void HAL_ETH_MspInit(ETH_HandleTypeDef* ethHandle)
{GPIO_InitTypeDef GPIO_InitStruct = {0};if(ethHandle->Instance==ETH){/* USER CODE BEGIN ETH_MspInit 0 *//* USER CODE END ETH_MspInit 0 *//* ETH clock enable */__HAL_RCC_ETH_CLK_ENABLE();__HAL_RCC_GPIOC_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();__HAL_RCC_GPIOB_CLK_ENABLE();__HAL_RCC_GPIOG_CLK_ENABLE();/**ETH GPIO ConfigurationPC1 ------> ETH_MDCPA1 ------> ETH_REF_CLKPA2 ------> ETH_MDIOPA7 ------> ETH_CRS_DVPC4 ------> ETH_RXD0PC5 ------> ETH_RXD1PB11 ------> ETH_TX_ENPG13 ------> ETH_TXD0PG14 ------> ETH_TXD1*/GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF11_ETH;HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_7;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF11_ETH;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);GPIO_InitStruct.Pin = GPIO_PIN_11;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF11_ETH;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF11_ETH;HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);/* USER CODE BEGIN ETH_MspInit 1 */PhyReset();/* USER CODE END ETH_MspInit 1 */}
}void HAL_ETH_MspDeInit(ETH_HandleTypeDef* ethHandle)
{if(ethHandle->Instance==ETH){/* USER CODE BEGIN ETH_MspDeInit 0 *//* USER CODE END ETH_MspDeInit 0 *//* Peripheral clock disable */__HAL_RCC_ETH_CLK_DISABLE();/**ETH GPIO ConfigurationPC1 ------> ETH_MDCPA1 ------> ETH_REF_CLKPA2 ------> ETH_MDIOPA7 ------> ETH_CRS_DVPC4 ------> ETH_RXD0PC5 ------> ETH_RXD1PB11 ------> ETH_TX_ENPG13 ------> ETH_TXD0PG14 ------> ETH_TXD1*/HAL_GPIO_DeInit(GPIOC, GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5);HAL_GPIO_DeInit(GPIOA, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_7);HAL_GPIO_DeInit(GPIOB, GPIO_PIN_11);HAL_GPIO_DeInit(GPIOG, GPIO_PIN_13|GPIO_PIN_14);/* USER CODE BEGIN ETH_MspDeInit 1 *//* USER CODE END ETH_MspDeInit 1 */}
}/* USER CODE BEGIN 1 */
/* SR8201F Register 2 0x001CRegister 3 0xC016YT8512C Register 2 0x0000Register 3 0x0128LAN8720A Register 2 0x0007Register 3 0xC0F0RTL8201BL Register 2 0x0000Register 3 0x8201 */
void PhyReset(void)
{uint32_t regvalue;HAL_ETH_ReadPHYRegister(&heth,PHY_REGISTER2, ®value);//get phy idPHY_TYPE = regvalue;printf("phy id is %d\n",PHY_TYPE);if (PHY_TYPE && 0xFFF == 0xFFF) /*LAN8720A*/{pcf8574_write_bit(ETH_RESET_IO,1);osal_usleep(10000);pcf8574_write_bit(ETH_RESET_IO,0);osal_usleep(10000);}else /*YT8512C*/{pcf8574_write_bit(ETH_RESET_IO,0);osal_usleep(10000);pcf8574_write_bit(ETH_RESET_IO,1);osal_usleep(10000);}HAL_ETH_ReadPHYRegister(&heth,PHY_REGISTER2, ®value);//get phy idswitch (regvalue){case YT8512C_AND_RTL8201BL_PHYREGISTER2:HAL_ETH_ReadPHYRegister(&heth,PHY_REGISTER3, ®value);if (regvalue == 0x128){ETH_CHIP_PHYSCSR = ((uint16_t)0x11);ETH_CHIP_SPEED_STATUS = ((uint16_t)0x4010);ETH_CHIP_DUPLEX_STATUS = ((uint16_t)0x2000);PHY_TYPE = YT8512C;}else{ETH_CHIP_PHYSCSR = ((uint16_t)0x10);ETH_CHIP_SPEED_STATUS = ((uint16_t)0x0022);ETH_CHIP_DUPLEX_STATUS = ((uint16_t)0x0004);PHY_TYPE = RTL8201;}break;case SR8201F_PHYREGISTER2:ETH_CHIP_PHYSCSR = ((uint16_t)0x00);ETH_CHIP_SPEED_STATUS = ((uint16_t)0x2020);ETH_CHIP_DUPLEX_STATUS = ((uint16_t)0x0100);PHY_TYPE = SR8201F;break;case LAN8720A_PHYREGISTER2:ETH_CHIP_PHYSCSR = ((uint16_t)0x1F);ETH_CHIP_SPEED_STATUS = ((uint16_t)0x0004);ETH_CHIP_DUPLEX_STATUS = ((uint16_t)0x0010);PHY_TYPE = LAN8720;break;}
}int32_t eth_chip_get_link_state(void)
{uint32_t readval = 0;if (HAL_ETH_ReadPHYRegister(&heth,ETH_CHIP_PHYSCSR, &readval) != HAL_OK){return ETH_CHIP_STATUS_READ_ERROR;}if (((readval & ETH_CHIP_SPEED_STATUS) != ETH_CHIP_SPEED_STATUS) && ((readval & ETH_CHIP_DUPLEX_STATUS) != 0)){return ETH_CHIP_STATUS_100MBITS_FULLDUPLEX;}else if (((readval & ETH_CHIP_SPEED_STATUS) != ETH_CHIP_SPEED_STATUS)){return ETH_CHIP_STATUS_100MBITS_HALFDUPLEX;}else if (((readval & ETH_CHIP_BCR_DUPLEX_MODE) != ETH_CHIP_BCR_DUPLEX_MODE)){return ETH_CHIP_STATUS_10MBITS_FULLDUPLEX;}else{return ETH_CHIP_STATUS_10MBITS_HALFDUPLEX;}
}int linkState;
int phyEvent;
void PhyEventHandler(void)
{uint32_t value;//Any link failure condition is latched in the BMSR register. Reading//the register twice will always return the actual link statusHAL_ETH_ReadPHYRegister(&heth, PHY_BSR, &value);/* Read PHY_BSR*/HAL_ETH_ReadPHYRegister(&heth, PHY_BSR, &value);/* Read PHY_BSR*///Link is up?if((value & PHY_LINKED_STATUS) != 0){int32_t readval = 0;uint32_t duplex = 0;uint32_t speed = 0;readval = eth_chip_get_link_state();if (readval == ETH_CHIP_STATUS_READ_ERROR){//Update link statelinkState = FALSE;}else{switch (readval){case ETH_CHIP_STATUS_100MBITS_FULLDUPLEX:duplex = ETH_MODE_FULLDUPLEX;speed = ETH_SPEED_100M;printf("ETH_CHIP_STATUS_100MBITS_FULLDUPLEX\n");break;case ETH_CHIP_STATUS_100MBITS_HALFDUPLEX:duplex = ETH_MODE_HALFDUPLEX;speed = ETH_SPEED_100M;printf("ETH_CHIP_STATUS_100MBITS_HALFDUPLEX\n");break;case ETH_CHIP_STATUS_10MBITS_FULLDUPLEX:duplex = ETH_MODE_FULLDUPLEX;speed = ETH_SPEED_10M;printf("ETH_CHIP_STATUS_10MBITS_FULLDUPLEX\n");break;case ETH_CHIP_STATUS_10MBITS_HALFDUPLEX:duplex = ETH_MODE_HALFDUPLEX;speed = ETH_SPEED_10M;printf("ETH_CHIP_STATUS_10MBITS_HALFDUPLEX\n");break;default:duplex = ETH_MODE_FULLDUPLEX;speed = ETH_SPEED_100M;printf("ETH_CHIP_STATUS_100MBITS_FULLDUPLEX\n");break;}heth.Init.Speed = speed;heth.Init.DuplexMode = duplex;//Update link statelinkState = TRUE;/* ETHERNET MAC Re-Configuration */HAL_ETH_ConfigMAC(&heth, (ETH_MACInitTypeDef *) NULL);/* Restart MAC interface */HAL_ETH_Start(&heth);}}else{//Update link statelinkState = FALSE;}}
extern int dorun;
void PhyTick(void)
{uint32_t value;int link;//Any link failure condition is latched in the BMSR register. Reading//the register twice will always return the actual link statusHAL_ETH_ReadPHYRegister(&heth, PHY_BSR, &value);/* Read PHY_BSR*/HAL_ETH_ReadPHYRegister(&heth, PHY_BSR, &value);/* Read PHY_BSR*///Retrieve current link statelink= (value & PHY_LINKED_STATUS) ? TRUE : FALSE;//Link up event?if(link && !linkState){//Set event flagphyEvent = TRUE;printf("Link up event\n");}//Link down event?else if(!link && linkState){//Set event flagphyEvent = TRUE;dorun = 0;printf("Link down event\n");}
}int EthRdPacket(void* pBuff)
{int Len;uint8_t* pDmaBuff;HAL_StatusTypeDef HalStatus;__IO ETH_DMADescTypeDef *dmarxdesc;HalStatus = HAL_ETH_GetReceivedFrame(&heth); // check if a packet has been received/* Clean and Invalidate data cache *///SCB_CleanInvalidateDCache();if (HalStatus == HAL_OK) // packet received{Len = heth.RxFrameInfos.length; // packet lenghtpDmaBuff = (uint8_t*)heth.RxFrameInfos.buffer; // DMA buffer pointememcpy (pBuff, pDmaBuff, Len); // read the data/* Release descriptors to DMA *//* Point to first descriptor */dmarxdesc = heth.RxFrameInfos.FSRxDesc;/* Set Own bit in Rx descriptors: gives the buffers back to DMA */for (int i=0; i< heth.RxFrameInfos.SegCount; i++){dmarxdesc->Status |= ETH_DMARXDESC_OWN;dmarxdesc = (ETH_DMADescTypeDef *)(dmarxdesc->Buffer2NextDescAddr);}/* Clear Segment_Count */heth.RxFrameInfos.SegCount =0;return Len; // return the number of bytes read}else{return 0; // no packet received}
}int EthWrPacket(void* pBuff, int Len)
{uint8_t* pDmaBuff;HAL_StatusTypeDef HalStatus;/* Clean and Invalidate data cache *///SCB_CleanInvalidateDCache();if ((heth.TxDesc->Status & ETH_DMATXDESC_OWN) == (uint32_t)RESET){pDmaBuff = (uint8_t*)(heth.TxDesc->Buffer1Addr);memcpy (pDmaBuff, pBuff, Len);HalStatus = HAL_ETH_TransmitFrame(&heth, Len);if (HalStatus != HAL_OK){printf ("HAL_ETH_TransmitFrame err %d\n", HalStatus);return 0;}return Len;}else{return 0;}
}
/* USER CODE END 1 *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
SOEM例程
main.c
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init */time_s = 0;time_ms = 0;time_us = 0;/* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_TIM2_Init();MX_TIM5_Init();MX_USART1_UART_Init();//MX_ETH_Init();/* USER CODE BEGIN 2 */HAL_TIM_Base_Start_IT(&htim2);HAL_TIM_Base_Start_IT(&htim5);while (pcf8574_init()) /* ��ⲻ��PCF8574 */{printf("PCF8574 Check Failed!\n");osal_usleep(1000);printf("Please Check! \n");}printf("PCF8574 Check Success!\n");MX_ETH_Init();linkState = FALSE;/* USER CODE END 2 *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */PhyTick();if(phyEvent){phyEvent = FALSE;PhyEventHandler();simpletest("hello");//slaveinfo("hello");//servotest("hello");}else{if(time_us%100000 == 0){//ecatcheck();}}}/* USER CODE END 3 */
}
slaveinfo.c
/** \file* \brief Example code for Simple Open EtherCAT master** Usage : slaveinfo [ifname] [-sdo] [-map]* Ifname is NIC interface, f.e. eth0.* Optional -sdo to display CoE object dictionary.* Optional -map to display slave PDO mapping** This shows the configured slave data.** (c)Arthur Ketels 2010 - 2011*/#include <stdio.h>
#include <string.h>
#include <inttypes.h>#include "ethercat.h"
#include "slaveinfo.h"extern char IOmap[4096];
ec_ODlistt ODlist;
ec_OElistt OElist;
boolean printSDO = FALSE;
boolean printMAP = FALSE;
char usdo[128];
char hstr[1024];char* dtype2string(uint16 dtype)
{switch(dtype){case ECT_BOOLEAN:sprintf(hstr, "BOOLEAN");break;case ECT_INTEGER8:sprintf(hstr, "INTEGER8");break;case ECT_INTEGER16:sprintf(hstr, "INTEGER16");break;case ECT_INTEGER32:sprintf(hstr, "INTEGER32");break;case ECT_INTEGER24:sprintf(hstr, "INTEGER24");break;case ECT_INTEGER64:sprintf(hstr, "INTEGER64");break;case ECT_UNSIGNED8:sprintf(hstr, "UNSIGNED8");break;case ECT_UNSIGNED16:sprintf(hstr, "UNSIGNED16");break;case ECT_UNSIGNED32:sprintf(hstr, "UNSIGNED32");break;case ECT_UNSIGNED24:sprintf(hstr, "UNSIGNED24");break;case ECT_UNSIGNED64:sprintf(hstr, "UNSIGNED64");break;case ECT_REAL32:sprintf(hstr, "REAL32");break;case ECT_REAL64:sprintf(hstr, "REAL64");break;case ECT_BIT1:sprintf(hstr, "BIT1");break;case ECT_BIT2:sprintf(hstr, "BIT2");break;case ECT_BIT3:sprintf(hstr, "BIT3");break;case ECT_BIT4:sprintf(hstr, "BIT4");break;case ECT_BIT5:sprintf(hstr, "BIT5");break;case ECT_BIT6:sprintf(hstr, "BIT6");break;case ECT_BIT7:sprintf(hstr, "BIT7");break;case ECT_BIT8:sprintf(hstr, "BIT8");break;case ECT_VISIBLE_STRING:sprintf(hstr, "VISIBLE_STRING");break;case ECT_OCTET_STRING:sprintf(hstr, "OCTET_STRING");break;default:sprintf(hstr, "Type 0x%4.4X", dtype);}return hstr;
}char* SDO2string(uint16 slave, uint16 index, uint8 subidx, uint16 dtype)
{int l = sizeof(usdo) - 1, i;uint8 *u8;int8 *i8;uint16 *u16;int16 *i16;uint32 *u32;int32 *i32;uint64 *u64;int64 *i64;float *sr;double *dr;char es[32];memset(&usdo, 0, 128);ec_SDOread(slave, index, subidx, FALSE, &l, &usdo, EC_TIMEOUTRXM);if (EcatError){return ec_elist2string();}else{switch(dtype){case ECT_BOOLEAN:u8 = (uint8*) &usdo[0];if (*u8) sprintf(hstr, "TRUE");else sprintf(hstr, "FALSE");break;case ECT_INTEGER8:i8 = (int8*) &usdo[0];sprintf(hstr, "0x%2.2x %d", *i8, *i8);break;case ECT_INTEGER16:i16 = (int16*) &usdo[0];sprintf(hstr, "0x%4.4x %d", *i16, *i16);break;case ECT_INTEGER32:case ECT_INTEGER24:i32 = (int32*) &usdo[0];sprintf(hstr, "0x%8.8x %d", *i32, *i32);break;case ECT_INTEGER64:i64 = (int64*) &usdo[0];sprintf(hstr, "0x%16.16"PRIx64" %"PRId64, *i64, *i64);break;case ECT_UNSIGNED8:u8 = (uint8*) &usdo[0];sprintf(hstr, "0x%2.2x %u", *u8, *u8);break;case ECT_UNSIGNED16:u16 = (uint16*) &usdo[0];sprintf(hstr, "0x%4.4x %u", *u16, *u16);break;case ECT_UNSIGNED32:case ECT_UNSIGNED24:u32 = (uint32*) &usdo[0];sprintf(hstr, "0x%8.8x %u", *u32, *u32);break;case ECT_UNSIGNED64:u64 = (uint64*) &usdo[0];sprintf(hstr, "0x%16.16"PRIx64" %"PRIu64, *u64, *u64);break;case ECT_REAL32:sr = (float*) &usdo[0];sprintf(hstr, "%f", *sr);break;case ECT_REAL64:dr = (double*) &usdo[0];sprintf(hstr, "%f", *dr);break;case ECT_BIT1:case ECT_BIT2:case ECT_BIT3:case ECT_BIT4:case ECT_BIT5:case ECT_BIT6:case ECT_BIT7:case ECT_BIT8:u8 = (uint8*) &usdo[0];sprintf(hstr, "0x%x", *u8);break;case ECT_VISIBLE_STRING:strcpy(hstr, usdo);break;case ECT_OCTET_STRING:hstr[0] = 0x00;for (i = 0 ; i < l ; i++){sprintf(es, "0x%2.2x ", usdo[i]);strcat( hstr, es);}break;default:sprintf(hstr, "Unknown type");}return hstr;}
}/** Read PDO assign structure */
int si_PDOassign(uint16 slave, uint16 PDOassign, int mapoffset, int bitoffset)
{uint16 idxloop, nidx, subidxloop, rdat, idx, subidx;uint8 subcnt;int wkc, bsize = 0, rdl;int32 rdat2;uint8 bitlen, obj_subidx;uint16 obj_idx;int abs_offset, abs_bit;rdl = sizeof(rdat); rdat = 0;/* read PDO assign subindex 0 ( = number of PDO's) */wkc = ec_SDOread(slave, PDOassign, 0x00, FALSE, &rdl, &rdat, EC_TIMEOUTRXM);rdat = etohs(rdat);/* positive result from slave ? */if ((wkc > 0) && (rdat > 0)){/* number of available sub indexes */nidx = rdat;bsize = 0;/* read all PDO's */for (idxloop = 1; idxloop <= nidx; idxloop++){rdl = sizeof(rdat); rdat = 0;/* read PDO assign */wkc = ec_SDOread(slave, PDOassign, (uint8)idxloop, FALSE, &rdl, &rdat, EC_TIMEOUTRXM);/* result is index of PDO */idx = etohs(rdat);if (idx > 0){rdl = sizeof(subcnt); subcnt = 0;/* read number of subindexes of PDO */wkc = ec_SDOread(slave,idx, 0x00, FALSE, &rdl, &subcnt, EC_TIMEOUTRXM);subidx = subcnt;/* for each subindex */for (subidxloop = 1; subidxloop <= subidx; subidxloop++){rdl = sizeof(rdat2); rdat2 = 0;/* read SDO that is mapped in PDO */wkc = ec_SDOread(slave, idx, (uint8)subidxloop, FALSE, &rdl, &rdat2, EC_TIMEOUTRXM);rdat2 = etohl(rdat2);/* extract bitlength of SDO */bitlen = LO_BYTE(rdat2);bsize += bitlen;obj_idx = (uint16)(rdat2 >> 16);obj_subidx = (uint8)((rdat2 >> 8) & 0x000000ff);abs_offset = mapoffset + (bitoffset / 8);abs_bit = bitoffset % 8;ODlist.Slave = slave;ODlist.Index[0] = obj_idx;OElist.Entries = 0;wkc = 0;/* read object entry from dictionary if not a filler (0x0000:0x00) */if(obj_idx || obj_subidx)wkc = ec_readOEsingle(0, obj_subidx, &ODlist, &OElist);printf(" [0x%4.4X.%1d] 0x%4.4X:0x%2.2X 0x%2.2X", abs_offset, abs_bit, obj_idx, obj_subidx, bitlen);if((wkc > 0) && OElist.Entries){printf(" %-12s %s\n", dtype2string(OElist.DataType[obj_subidx]), OElist.Name[obj_subidx]);}elseprintf("\n");bitoffset += bitlen;};};};};/* return total found bitlength (PDO) */return bsize;
}int si_map_sdo(int slave)
{int wkc, rdl;int retVal = 0;uint8 nSM, iSM, tSM;int Tsize, outputs_bo, inputs_bo;uint8 SMt_bug_add;printf("PDO mapping according to CoE :\n");SMt_bug_add = 0;outputs_bo = 0;inputs_bo = 0;rdl = sizeof(nSM); nSM = 0;/* read SyncManager Communication Type object count */wkc = ec_SDOread(slave, ECT_SDO_SMCOMMTYPE, 0x00, FALSE, &rdl, &nSM, EC_TIMEOUTRXM);/* positive result from slave ? */if ((wkc > 0) && (nSM > 2)){/* make nSM equal to number of defined SM */nSM--;/* limit to maximum number of SM defined, if true the slave can't be configured */if (nSM > EC_MAXSM)nSM = EC_MAXSM;/* iterate for every SM type defined */for (iSM = 2 ; iSM <= nSM ; iSM++){rdl = sizeof(tSM); tSM = 0;/* read SyncManager Communication Type */wkc = ec_SDOread(slave, ECT_SDO_SMCOMMTYPE, iSM + 1, FALSE, &rdl, &tSM, EC_TIMEOUTRXM);if (wkc > 0){if((iSM == 2) && (tSM == 2)) // SM2 has type 2 == mailbox out, this is a bug in the slave!{SMt_bug_add = 1; // try to correct, this works if the types are 0 1 2 3 and should be 1 2 3 4printf("Activated SM type workaround, possible incorrect mapping.\n");}if(tSM)tSM += SMt_bug_add; // only add if SMt > 0if (tSM == 3) // outputs{/* read the assign RXPDO */printf(" SM%1d outputs\n addr b index: sub bitl data_type name\n", iSM);Tsize = si_PDOassign(slave, ECT_SDO_PDOASSIGN + iSM, (int)(ec_slave[slave].outputs - (uint8 *)&IOmap[0]), outputs_bo );outputs_bo += Tsize;}if (tSM == 4) // inputs{/* read the assign TXPDO */printf(" SM%1d inputs\n addr b index: sub bitl data_type name\n", iSM);Tsize = si_PDOassign(slave, ECT_SDO_PDOASSIGN + iSM, (int)(ec_slave[slave].inputs - (uint8 *)&IOmap[0]), inputs_bo );inputs_bo += Tsize;}}}}/* found some I/O bits ? */if ((outputs_bo > 0) || (inputs_bo > 0))retVal = 1;return retVal;
}int si_siiPDO(uint16 slave, uint8 t, int mapoffset, int bitoffset)
{uint16 a , w, c, e, er, Size;uint8 eectl;uint16 obj_idx;uint8 obj_subidx;uint8 obj_name;uint8 obj_datatype;uint8 bitlen;int totalsize;ec_eepromPDOt eepPDO;ec_eepromPDOt *PDO;int abs_offset, abs_bit;char str_name[EC_MAXNAME + 1];eectl = ec_slave[slave].eep_pdi;Size = 0;totalsize = 0;PDO = &eepPDO;PDO->nPDO = 0;PDO->Length = 0;PDO->Index[1] = 0;for (c = 0 ; c < EC_MAXSM ; c++) PDO->SMbitsize[c] = 0;if (t > 1)t = 1;PDO->Startpos = ec_siifind(slave, ECT_SII_PDO + t);if (PDO->Startpos > 0){a = PDO->Startpos;w = ec_siigetbyte(slave, a++);w += (ec_siigetbyte(slave, a++) << 8);PDO->Length = w;c = 1;/* traverse through all PDOs */do{PDO->nPDO++;PDO->Index[PDO->nPDO] = ec_siigetbyte(slave, a++);PDO->Index[PDO->nPDO] += (ec_siigetbyte(slave, a++) << 8);PDO->BitSize[PDO->nPDO] = 0;c++;/* number of entries in PDO */e = ec_siigetbyte(slave, a++);PDO->SyncM[PDO->nPDO] = ec_siigetbyte(slave, a++);a++;obj_name = ec_siigetbyte(slave, a++);a += 2;c += 2;if (PDO->SyncM[PDO->nPDO] < EC_MAXSM) /* active and in range SM? */{str_name[0] = 0;if(obj_name)ec_siistring(str_name, slave, obj_name);if (t)printf(" SM%1d RXPDO 0x%4.4X %s\n", PDO->SyncM[PDO->nPDO], PDO->Index[PDO->nPDO], str_name);elseprintf(" SM%1d TXPDO 0x%4.4X %s\n", PDO->SyncM[PDO->nPDO], PDO->Index[PDO->nPDO], str_name);printf(" addr b index: sub bitl data_type name\n");/* read all entries defined in PDO */for (er = 1; er <= e; er++){c += 4;obj_idx = ec_siigetbyte(slave, a++);obj_idx += (ec_siigetbyte(slave, a++) << 8);obj_subidx = ec_siigetbyte(slave, a++);obj_name = ec_siigetbyte(slave, a++);obj_datatype = ec_siigetbyte(slave, a++);bitlen = ec_siigetbyte(slave, a++);abs_offset = mapoffset + (bitoffset / 8);abs_bit = bitoffset % 8;PDO->BitSize[PDO->nPDO] += bitlen;a += 2;/* skip entry if filler (0x0000:0x00) */if(obj_idx || obj_subidx){str_name[0] = 0;if(obj_name)ec_siistring(str_name, slave, obj_name);printf(" [0x%4.4X.%1d] 0x%4.4X:0x%2.2X 0x%2.2X", abs_offset, abs_bit, obj_idx, obj_subidx, bitlen);printf(" %-12s %s\n", dtype2string(obj_datatype), str_name);}bitoffset += bitlen;totalsize += bitlen;}PDO->SMbitsize[ PDO->SyncM[PDO->nPDO] ] += PDO->BitSize[PDO->nPDO];Size += PDO->BitSize[PDO->nPDO];c++;}else /* PDO deactivated because SM is 0xff or > EC_MAXSM */{c += 4 * e;a += 8 * e;c++;}if (PDO->nPDO >= (EC_MAXEEPDO - 1)) c = PDO->Length; /* limit number of PDO entries in buffer */}while (c < PDO->Length);}if (eectl) ec_eeprom2pdi(slave); /* if eeprom control was previously pdi then restore */return totalsize;
}int si_map_sii(int slave)
{int retVal = 0;int Tsize, outputs_bo, inputs_bo;printf("PDO mapping according to SII :\n");outputs_bo = 0;inputs_bo = 0;/* read the assign RXPDOs */Tsize = si_siiPDO(slave, 1, (int)(ec_slave[slave].outputs - (uint8*)&IOmap), outputs_bo );outputs_bo += Tsize;/* read the assign TXPDOs */Tsize = si_siiPDO(slave, 0, (int)(ec_slave[slave].inputs - (uint8*)&IOmap), inputs_bo );inputs_bo += Tsize;/* found some I/O bits ? */if ((outputs_bo > 0) || (inputs_bo > 0))retVal = 1;return retVal;
}void si_sdo(int cnt)
{int i, j;ODlist.Entries = 0;memset(&ODlist, 0, sizeof(ODlist));if( ec_readODlist(cnt, &ODlist)){printf(" CoE Object Description found, %d entries.\n",ODlist.Entries);for( i = 0 ; i < ODlist.Entries ; i++){ec_readODdescription(i, &ODlist);while(EcatError) printf("%s", ec_elist2string());printf(" Index: %4.4x Datatype: %4.4x Objectcode: %2.2x Name: %s\n",ODlist.Index[i], ODlist.DataType[i], ODlist.ObjectCode[i], ODlist.Name[i]);memset(&OElist, 0, sizeof(OElist));ec_readOE(i, &ODlist, &OElist);while(EcatError) printf("%s", ec_elist2string());for( j = 0 ; j < ODlist.MaxSub[i]+1 ; j++){if ((OElist.DataType[j] > 0) && (OElist.BitLength[j] > 0)){printf(" Sub: %2.2x Datatype: %4.4x Bitlength: %4.4x Obj.access: %4.4x Name: %s\n",j, OElist.DataType[j], OElist.BitLength[j], OElist.ObjAccess[j], OElist.Name[j]);if ((OElist.ObjAccess[j] & 0x0007)){printf(" Value :%s\n", SDO2string(cnt, ODlist.Index[i], j, OElist.DataType[j]));}}}}}else{while(EcatError) printf("%s", ec_elist2string());}
}void slaveinfo(char *ifname)
{printSDO = TRUE;printMAP = TRUE;int cnt, i, j, nSM;uint16 ssigen;int expectedWKC;printf("Starting slaveinfo\n");/* initialise SOEM, bind socket to ifname */if (ec_init(ifname)){printf("ec_init on %s succeeded.\n",ifname);/* find and auto-config slaves */if ( ec_config_init(FALSE) > 0 ){printf("%d slaves found and configured.\n",ec_slavecount);ec_config_map(&IOmap);ec_configdc();while(EcatError) printf("%s", ec_elist2string());printf("%d slaves found and configured.\n",ec_slavecount);expectedWKC = (ec_group[0].outputsWKC * 2) + ec_group[0].inputsWKC;printf("Calculated workcounter %d\n", expectedWKC);/* wait for all slaves to reach SAFE_OP state */ec_statecheck(0, EC_STATE_SAFE_OP, EC_TIMEOUTSTATE * 3);if (ec_slave[0].state != EC_STATE_SAFE_OP ){printf("Not all slaves reached safe operational state.\n");ec_readstate();for(i = 1; i<=ec_slavecount ; i++){if(ec_slave[i].state != EC_STATE_SAFE_OP){printf("Slave %d State=%2x StatusCode=%4x : %s\n",i, ec_slave[i].state, ec_slave[i].ALstatuscode, ec_ALstatuscode2string(ec_slave[i].ALstatuscode));}}}ec_readstate();for( cnt = 1 ; cnt <= ec_slavecount ; cnt++){printf("\nSlave:%d\n Name:%s\n Output size: %dbits\n Input size: %dbits\n State: %d\n Delay: %d[ns]\n Has DC: %d\n",cnt, ec_slave[cnt].name, ec_slave[cnt].Obits, ec_slave[cnt].Ibits,ec_slave[cnt].state, ec_slave[cnt].pdelay, ec_slave[cnt].hasdc);if (ec_slave[cnt].hasdc) printf(" DCParentport:%d\n", ec_slave[cnt].parentport);printf(" Activeports:%d.%d.%d.%d\n", (ec_slave[cnt].activeports & 0x01) > 0 ,(ec_slave[cnt].activeports & 0x02) > 0 ,(ec_slave[cnt].activeports & 0x04) > 0 ,(ec_slave[cnt].activeports & 0x08) > 0 );printf(" Configured address: %4.4x\n", ec_slave[cnt].configadr);printf(" Man: %8.8x ID: %8.8x Rev: %8.8x\n", (int)ec_slave[cnt].eep_man, (int)ec_slave[cnt].eep_id, (int)ec_slave[cnt].eep_rev);for(nSM = 0 ; nSM < EC_MAXSM ; nSM++){if(ec_slave[cnt].SM[nSM].StartAddr > 0)printf(" SM%1d A:%4.4x L:%4d F:%8.8x Type:%d\n",nSM, etohs(ec_slave[cnt].SM[nSM].StartAddr), etohs(ec_slave[cnt].SM[nSM].SMlength),etohl(ec_slave[cnt].SM[nSM].SMflags), ec_slave[cnt].SMtype[nSM]);}for(j = 0 ; j < ec_slave[cnt].FMMUunused ; j++){printf(" FMMU%1d Ls:%8.8x Ll:%4d Lsb:%d Leb:%d Ps:%4.4x Psb:%d Ty:%2.2x Act:%2.2x\n", j,etohl(ec_slave[cnt].FMMU[j].LogStart), etohs(ec_slave[cnt].FMMU[j].LogLength), ec_slave[cnt].FMMU[j].LogStartbit,ec_slave[cnt].FMMU[j].LogEndbit, etohs(ec_slave[cnt].FMMU[j].PhysStart), ec_slave[cnt].FMMU[j].PhysStartBit,ec_slave[cnt].FMMU[j].FMMUtype, ec_slave[cnt].FMMU[j].FMMUactive);}printf(" FMMUfunc 0:%d 1:%d 2:%d 3:%d\n",ec_slave[cnt].FMMU0func, ec_slave[cnt].FMMU1func, ec_slave[cnt].FMMU2func, ec_slave[cnt].FMMU3func);printf(" MBX length wr: %d rd: %d MBX protocols : %2.2x\n", ec_slave[cnt].mbx_l, ec_slave[cnt].mbx_rl, ec_slave[cnt].mbx_proto);ssigen = ec_siifind(cnt, ECT_SII_GENERAL);/* SII general section */if (ssigen){ec_slave[cnt].CoEdetails = ec_siigetbyte(cnt, ssigen + 0x07);ec_slave[cnt].FoEdetails = ec_siigetbyte(cnt, ssigen + 0x08);ec_slave[cnt].EoEdetails = ec_siigetbyte(cnt, ssigen + 0x09);ec_slave[cnt].SoEdetails = ec_siigetbyte(cnt, ssigen + 0x0a);if((ec_siigetbyte(cnt, ssigen + 0x0d) & 0x02) > 0){ec_slave[cnt].blockLRW = 1;ec_slave[0].blockLRW++;}ec_slave[cnt].Ebuscurrent = ec_siigetbyte(cnt, ssigen + 0x0e);ec_slave[cnt].Ebuscurrent += ec_siigetbyte(cnt, ssigen + 0x0f) << 8;ec_slave[0].Ebuscurrent += ec_slave[cnt].Ebuscurrent;}printf(" CoE details: %2.2x FoE details: %2.2x EoE details: %2.2x SoE details: %2.2x\n",ec_slave[cnt].CoEdetails, ec_slave[cnt].FoEdetails, ec_slave[cnt].EoEdetails, ec_slave[cnt].SoEdetails);printf(" Ebus current: %d[mA]\n only LRD/LWR:%d\n",ec_slave[cnt].Ebuscurrent, ec_slave[cnt].blockLRW);if ((ec_slave[cnt].mbx_proto & ECT_MBXPROT_COE) && printSDO)si_sdo(cnt);if(printMAP){if (ec_slave[cnt].mbx_proto & ECT_MBXPROT_COE)si_map_sdo(cnt);elsesi_map_sii(cnt);}}}else{printf("No slaves found!\n");}printf("End slaveinfo, close socket\n");/* stop SOEM, close socket */ec_close();}else{printf("No socket connection on %s\nExcecute as root\n",ifname);}
}
simpletest.c
#include "simpletest.h"
#include "ethercat.h"
#include <stdio.h>#define EC_TIMEOUTMON 500extern char IOmap[4096];
boolean needlf;
boolean inOP;
int wkc;
int expectedWKC;
uint8 currentgroup = 0;void simpletest(char *ifname)
{int i, j, oloop, iloop, chk;needlf = FALSE;inOP = FALSE;printf("Starting simple test\n");/* initialise SOEM, bind socket to ifname */if (ec_init(ifname)){printf("ec_init on %s succeeded.\n",ifname);/* find and auto-config slaves */if ( ec_config_init(FALSE) > 0 ){printf("%d slaves found and configured.\n",ec_slavecount);ec_config_map(&IOmap);ec_configdc();printf("Slaves mapped, state to SAFE_OP.\n");/* wait for all slaves to reach SAFE_OP state */ec_statecheck(0, EC_STATE_SAFE_OP, EC_TIMEOUTSTATE * 4);oloop = ec_slave[0].Obytes;if ((oloop == 0) && (ec_slave[0].Obits > 0)) oloop = 1;if (oloop > 8) oloop = 8;iloop = ec_slave[0].Ibytes;if ((iloop == 0) && (ec_slave[0].Ibits > 0)) iloop = 1;if (iloop > 8) iloop = 8;printf("segments : %d : %d %d %d %d\n",ec_group[0].nsegments ,ec_group[0].IOsegment[0],ec_group[0].IOsegment[1],ec_group[0].IOsegment[2],ec_group[0].IOsegment[3]);printf("Request operational state for all slaves\n");expectedWKC = (ec_group[0].outputsWKC * 2) + ec_group[0].inputsWKC;printf("Calculated workcounter %d\n", expectedWKC);ec_slave[0].state = EC_STATE_OPERATIONAL;/* send one valid process data to make outputs in slaves happy*/ec_send_processdata();ec_receive_processdata(EC_TIMEOUTRET);/* request OP state for all slaves */ec_writestate(0);chk = 200;/* wait for all slaves to reach OP state */do{ec_send_processdata();ec_receive_processdata(EC_TIMEOUTRET);ec_statecheck(0, EC_STATE_OPERATIONAL, 50000);}while (chk-- && (ec_slave[0].state != EC_STATE_OPERATIONAL));if (ec_slave[0].state == EC_STATE_OPERATIONAL ){printf("Operational state reached for all slaves.\n");inOP = TRUE;/* cyclic loop */for(i = 1; i <= 1000; i++){ec_send_processdata();wkc = ec_receive_processdata(EC_TIMEOUTRET);if(wkc >= expectedWKC){printf("Processdata cycle %4d, WKC %d , O:", i, wkc);for(j = 0 ; j < oloop; j++){printf(" %2.2x", *(ec_slave[0].outputs + j));}printf(" I:");for(j = 0 ; j < iloop; j++){printf(" %2.2x", *(ec_slave[0].inputs + j));}printf(" T:%lld\n",ec_DCtime);needlf = TRUE;}osal_usleep(5000);}inOP = FALSE;}else{printf("Not all slaves reached operational state.\n");ec_readstate();for(i = 1; i<=ec_slavecount ; i++){if(ec_slave[i].state != EC_STATE_OPERATIONAL){printf("Slave %d State=0x%2.2x StatusCode=0x%4.4x : %s\n",i, ec_slave[i].state, ec_slave[i].ALstatuscode, ec_ALstatuscode2string(ec_slave[i].ALstatuscode));}}}printf("\nRequest init state for all slaves\n");ec_slave[0].state = EC_STATE_INIT;/* request INIT state for all slaves */ec_writestate(0);}else{printf("No slaves found!\n");}printf("End simple test, close socket\n");}else{printf("No socket connection on %s\nExcecute as root\n",ifname);}
}void ecatcheck(void)
{int slave;if( inOP && ((wkc < expectedWKC) || ec_group[currentgroup].docheckstate)){if (needlf){needlf = FALSE;printf("\n");}/* one ore more slaves are not responding */ec_group[currentgroup].docheckstate = FALSE;ec_readstate();for (slave = 1; slave <= ec_slavecount; slave++){if ((ec_slave[slave].group == currentgroup) && (ec_slave[slave].state != EC_STATE_OPERATIONAL)){ec_group[currentgroup].docheckstate = TRUE;if (ec_slave[slave].state == (EC_STATE_SAFE_OP + EC_STATE_ERROR)){printf("ERROR : slave %d is in SAFE_OP + ERROR, attempting ack.\n", slave);ec_slave[slave].state = (EC_STATE_SAFE_OP + EC_STATE_ACK);ec_writestate(slave);}else if(ec_slave[slave].state == EC_STATE_SAFE_OP){printf("WARNING : slave %d is in SAFE_OP, change to OPERATIONAL.\n", slave);ec_slave[slave].state = EC_STATE_OPERATIONAL;ec_writestate(slave);}else if(ec_slave[slave].state > EC_STATE_NONE){if (ec_reconfig_slave(slave, EC_TIMEOUTMON)){ec_slave[slave].islost = FALSE;printf("MESSAGE : slave %d reconfigured\n",slave);}}else if(!ec_slave[slave].islost){/* re-check state */ec_statecheck(slave, EC_STATE_OPERATIONAL, EC_TIMEOUTRET);if (ec_slave[slave].state == EC_STATE_NONE){ec_slave[slave].islost = TRUE;printf("ERROR : slave %d lost\n",slave);}}}if (ec_slave[slave].islost){if(ec_slave[slave].state == EC_STATE_NONE){if (ec_recover_slave(slave, EC_TIMEOUTMON)){ec_slave[slave].islost = FALSE;printf("MESSAGE : slave %d recovered\n",slave);}}else{ec_slave[slave].islost = FALSE;printf("MESSAGE : slave %d found\n",slave);}}}if(!ec_group[currentgroup].docheckstate)printf("OK : all slaves resumed OPERATIONAL.\n");}}