【AI大模型】探索GPT模型的奥秘:引领自然语言处理的新纪元

d8a1c3f6ba174a118fb99fec57ba9d30.jpeg

目录

🍔 GPT介绍

🍔 GPT的架构

🍔 GPT训练过程

3.1 无监督的预训练语言模型

3.2 有监督的下游任务fine-tunning

🍔 小结

93ed7c15d0f847b8b761e3a66768683f.gif

 

学习目标

  • 了解什么是GPT.
  • 掌握GPT的架构.
  • 掌握GPT的预训练任务.

🍔 GPT介绍

  • GPT是OpenAI公司提出的一种语言预训练模型.
  • OpenAI在论文<< Improving Language Understanding by Generative Pre-Training >>中提出GPT模型.
  • OpenAI后续又在论文<< Language Models are Unsupervised Multitask Learners >>中提出GPT2模型.
  • GPT和GPT2模型结构差别不大, 但是GPT2采用了更大的数据集进行训练.

  • OpenAI GPT模型是在Google BERT模型之前提出的, 与BERT最大的区别在于GPT采用了传统的语言模型方法进行预训练, 即使用单词的上文来预测单词, 而BERT是采用了双向上下文的信息共同来预测单词.

  • 正是因为训练方法上的区别, 使得GPT更擅长处理自然语言生成任务(NLG), 而BERT更擅长处理自然语言理解任务(NLU).

🍔 GPT的架构

  • 看三个语言模型的对比架构图, 中间的就是GPT:


8151a9da4e7e44d9bb1b3a3b54dbbdb0.png

 

  • 从上图可以很清楚的看到GPT采用的是单向Transformer模型, 例如给定一个句子[u1, u2, ..., un], GPT在预测单词ui的时候只会利用[u1, u2, ..., u(i-1)]的信息, 而BERT会同时利用上下文的信息[u1, u2, ..., u(i-1), u(i+1), ..., un].

  • 作为两大模型的直接对比, BERT采用了Transformer的Encoder模块, 而GPT采用了Transformer的Decoder模块. 并且GPT的Decoder Block和经典Transformer Decoder Block还有所不同, 如下图所示:

e6de7ee9a94d4118822cd1ba957ff378.png 

  • 如上图所示, 经典的Transformer Decoder Block包含3个子层, 分别是Masked Multi-Head Attention层, encoder-decoder attention层, 以及Feed Forward层. 但是在GPT中取消了第二个encoder-decoder attention子层, 只保留Masked Multi-Head Attention层, 和Feed Forward层.

  • 作为单向Transformer Decoder模型, GPT利用句子序列信息预测下一个单词的时候, 要使用Masked Multi-Head Attention对单词的下文进行遮掩, 来防止未来信息的提前泄露. 例如给定一个句子包含4个单词[A, B, C, D], GPT需要用[A]预测B, 用[A, B]预测C, 用[A, B, C]预测D. 很显然的就是当要预测B时, 需要将[B, C, D]遮掩起来.


3d51ef0fb229496bb40ad16fbc353ef5.png

 

  • 具体的遮掩操作是在slef-attention进行softmax之前进行的, 一般的实现是将MASK的位置用一个无穷小的数值-inf来替换, 替换后执行softmax计算得到新的结果矩阵. 这样-inf的位置就变成了0. 如上图所示, 最后的矩阵可以很方便的做到当利用A预测B的时候, 只能看到A的信息; 当利用[A, B]预测C的时候, 只能看到A, B的信息.

  • 注意: 对比于经典的Transformer架构, 解码器模块采用了6个Decoder Block; GPT的架构中采用了12个Decoder Block.

 

2375ea08000d42758eb9b70920722764.png

🍔 GPT训练过程

GPT的训练也是典型的两阶段过程:

  • 第一阶段: 无监督的预训练语言模型.
  • 第二阶段: 有监督的下游任务fine-tunning.

3.1 无监督的预训练语言模型

给定句子U = [u1, u2, ..., un], GPT训练语言模型时的目标是最大化下面的似然函数:

d873c04a2a294baea5fe56d9f4bcd832.png

有上述公式可知, GPT是一个单向语言模型, 假设输入张量用h0表示, 则计算公式如下:

2c768e9cbfc348778b5a68f33632473c.png

其中Wp是单词的位置编码, We是单词本身的word embedding. Wp的形状是[max_seq_len, embedding_dim], We的形状是[vocab_size, embedding_dim].

得到输入张量h0后, 要将h0传入GPT的Decoder Block中, 依次得到ht:

0b1e3e7a999448c9babe08db31e80313.png

最后通过得到的ht来预测下一个单词:

60c4bd238e1b42ed97ba597575690ff2.png

3.2 有监督的下游任务fine-tunning

GPT经过预训练后, 会针对具体的下游任务对模型进行微调. 微调采用的是有监督学习, 训练样本包括单词序列[x1, x2, ..., xn]和label y. GPT微调的目标任务是根据单词序列[x1, x2, ..., xn]预测标签y.

d0383974b2494769abb4f6b57c32bda2.png

其中Wy��表示预测输出的矩阵参数, 微调任务的目标是最大化下面的函数:

2099ac6959c04b68ac6d6a2c5bc9f0da.png

综合两个阶段的目标任务函数, 可知GPT的最终优化函数为:

a4c73c86ddcb48ff9cad0c0f2ea6353f.png

🍔 小结

  • 学习了什么是GPT.

    • GPT是OpenAI公司提出的一种预训练语言模型.
    • 本质上来说, GPT是一个单向语言模型.
  • 学习了GPT的架构.

    • GPT采用了Transformer架构中的解码器模块.
    • GPT在使用解码器模块时做了一定的改造, 将传统的3层Decoder Block变成了2层Block, 删除了encoder-decoder attention子层, 只保留Masked Multi-Head Attention子层和Feed Forward子层.
    • GPT的解码器总共是由12个改造后的Decoder Block组成的.
  • 学习了GPT的预训练任务.

    • 第一阶段: 无监督的预训练语言模型. 只利用单词前面的信息来预测当前单词.
    • 第二阶段: 有监督的下游任务fine-tunning.

1db050c85ff5461ca02276ddc4db148c.gife247add1f1514310a62eaa99576082d3.jpeg 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/497746.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

elasticsearch-java客户端jar包中各模块的应用梳理

最近使用elasticsearch-java客户端实现对elasticsearch服务的Api请求&#xff0c;现对elasticsearch-java客户端jar包中各模块的应用做个梳理。主要是对co.elastic.clients.elasticsearch路径下的各子包的简单说明。使用的版本为&#xff1a;co.elastic.clients:elasticsearch-…

前后端分离(前后端交互步骤)

1.设计数据库 /*Navicat Premium Data Transfer ​Source Server : localhost_3306Source Server Type : MySQLSource Server Version : 80037 (8.0.37)Source Host : localhost:3306Source Schema : studymysql ​Target Server Type : MySQL…

【VulnOSv2靶场渗透】

文章目录 一、基础信息 二、信息收集 三、漏洞探测 四、提权 一、基础信息 Kali IP: 192.168.20.146 靶机IP&#xff1a;192.168.20.152 二、信息收集 nmap -sS -sV -p- -A 192.168.20.152 开放了22、80、6667等端口 22端口&#xff1a;openssh 6.6.1p1 80端口&…

无需训练!多提示视频生成最新SOTA!港中文腾讯等发布DiTCtrl:基于MM-DiT架构

文章链接&#xff1a;https://arxiv.org/pdf/2412.18597 项目链接&#xff1a;https://github.com/TencentARC/DiTCtrl 亮点直击 DiTCtrl&#xff0c;这是一种基于MM-DiT架构的、首次无需调优的多提示视频生成方法。本文的方法结合了新颖的KV共享机制和隐混合策略&#xff0c;使…

SpringBoot对静态资源的映射规则

目录 什么是SpringBoot静态资源映射&#xff1f; 如何实现SpringBoot静态资源映射&#xff1f; 1. webjars&#xff1a;以jar包的方式引入静态资源 示例&#xff1a; 2. /** 访问当前项目的任何资源 示例一&#xff1a; 示例二&#xff1a; 3. 静态首页&#xff08;欢…

【EtherCATBasics】- KRTS C++示例精讲(2)

EtherCATBasics示例讲解 目录 EtherCATBasics示例讲解结构说明代码讲解 项目打开请查看【BaseFunction精讲】。 结构说明 EtherCATBasics&#xff1a;应用层程序&#xff0c;主要用于人机交互、数据显示、内核层数据交互等&#xff1b; EtherCATBasics.h &#xff1a; 数据定义…

【论文阅读】Reducing Activation Recomputation in Large Transformer Models

创新点&#xff1a; 针对Transformer结构&#xff0c;通过序列并行和选择性重计算激活值&#xff0c;在节省显存空间占用的情况下&#xff0c;不带来明显通信开销&#xff0c;同时减少重计算成本。 总的来说&#xff0c;就是在原有的张量并行的基础上&#xff0c;对LayerNorm和…

Linux arm 编译安装glibc-2.29

重要的话说三遍&#xff1a; &#xff01;&#xff01;&#xff01;&#xff01;&#xff01;不要轻易自己去安装glibc&#xff01;&#xff01;&#xff01;&#xff01;&#xff01; &#xff01;&#xff01;&#xff01;&#xff01;&#xff01;不要轻易自己去安装glibc&a…

STM32完全学习——FLASH上FATFS文件管理系统

一、需要移植的接口 我们通过看官网的手册&#xff0c;可以看到我们只要完成下面函数的实现&#xff0c;就可以完成移植。我们这里只移植前5个函数&#xff0c;获取时间的函数我们不在这里移植。 二、移植接口函数 DSTATUS disk_status (BYTE pdrv /* Physical drive nmuber…

Docker使用——国内Docker的安装办法

文章目录 参考资料前言Mac安装办法Homebrew 安装1. 直接下报错2. 安装homebrew&#xff0c; 用国内镜像3. 安装Docker4. 启动docker服务5. 测试是否安装成功 参考资料 鸣谢大佬文章。 macOS系统中&#xff1a;Docker的安装&#xff1a;https://blog.csdn.net/sulia1234567890…

Java-38 深入浅出 Spring - AOP切面增强 核心概念 相关术语 Proxy配置

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 大数据篇正在更新&#xff01;https://blog.csdn.net/w776341482/category_12713819.html 目前已经更新到了&#xff1a; MyBatis&#xff…

【CSS in Depth 2 精译_096】16.4:CSS 中的三维变换 + 16.5:本章小结

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 第五部分 添加动效 ✔️【第 16 章 变换】 ✔️ 16.1 旋转、平移、缩放与倾斜 16.1.1 变换原点的更改16.1.2 多重变换的设置16.1.3 单个变换属性的设置 16.2 变换在动效中的应用 16.2.1 放大图标&am…

iOS 苹果开发者账号: 查看和添加设备UUID 及设备数量

参考链接&#xff1a;苹果开发者账号下添加新设备UUID - 简书 如果要添加新设备到 Profiles 证书里&#xff1a; 1.登录开发者中心 Sign In - Apple 2.找到证书设置&#xff1a; Certificate&#xff0c;Identifiers&Profiles > Profiles > 选择对应证书 edit &g…

【HENU】河南大学计院2024 计算机网络 期末复习知识点

和光同尘_我的个人主页 一直游到海水变蓝。 计网复习 第一章互联网组成类别交换方式分组交换的要点&#xff1a;分组交换的优点&#xff1a; 网络性能指标体系结构网络协议五层协议 第二章&#xff1a;物理层物理层的主要任务&#xff08;四大特性&#xff09;通信的三种方式…

Kafka中的Topic和Partition有什么关系?

大家好&#xff0c;我是锋哥。今天分享关于【Kafka中的Topic和Partition有什么关系&#xff1f;】面试题。希望对大家有帮助&#xff1b; Kafka中的Topic和Partition有什么关系&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Apache Kafka 中&#…

一文读懂变分自编码(VAE)

一文读懂变分自编码(VAE) 概述 变分自编码器&#xff08;Variational Autoencoder, VAE&#xff09;是一种生成模型&#xff0c;用于学习数据的潜在表示并生成与原始数据分布相似的新数据。它是一种概率模型&#xff0c;通过结合深度学习和变分推断的思想&#xff0c;解决了传…

第十七周:Fast R-CNN论文阅读

Fast R-CNN论文阅读 摘要Abstract文章简介1. 引言2. Fast R-CNN框架2.1 RoI位置信息映射2.2 RoI pooling2.3 分类器与边界框回归器2.4 以VGG16为backbone的Fast RCNN的网络结构 3. 训练细节3.1 采样3.2 多任务损失 4. 优缺点分析总结 摘要 这篇博客介绍了Fast R-CNN&#xff0…

ThinkPHP 8开发环境安装

【图书介绍】《ThinkPHP 8高效构建Web应用》-CSDN博客 《ThinkPHP 8高效构建Web应用 夏磊 编程与应用开发丛书 清华大学出版社》【摘要 书评 试读】- 京东图书 1. 安装PHP8 Windows系统用户可以前往https://windows.php.net/downloads/releases/archives/下载PHP 8.0版本&am…

VM虚拟机配置ubuntu网络

目录 桥接模式 NAT模式 桥接模式 特点&#xff1a;ubuntu的IP地址与主机IP的ip地址不同 第一部分&#xff1a;VM虚拟机给ubuntu的网络适配器&#xff0c;调为桥接模式 第二部分&#xff1a;保证所桥接的网络可以上网 第三部分&#xff1a;ubuntu使用DHCP&#xff08;默认&…

日本IT行业|分享实用的开发语言及框架

在日本IT行业中&#xff0c;开发语言与框架的选择非常多样化&#xff0c;但也有一些特定的技术和框架更为流行。以下是对日本IT行业在用的开发语言与框架的详细分享&#xff1a; 开发语言 Java&#xff1a;Java在日本是一门非常稳定且受欢迎的编程语言&#xff0c;很多日本公…