[Linux] 服务器CPU信息

(1)查看CPU信息(型号)

cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c

输出:可以看到有128个虚拟CPU核心,型号是后面一串

128  Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz

(2)查看物理CPU个数

cat /proc/cpuinfo| grep "physical id"| sort| uniq| wc -l

输出:我们实验室服务器只有两个物理CPU,垃圾。

2

(3)查看每个物理CPU中core的个数(即实际核数)

cat /proc/cpuinfo| grep "cpu cores"| uniq

输出: 一个CPU实际核数只有32。

cpu cores       : 32

(4)虚拟核心

输出中,显示了 CPU(s): 128,这意味着系统实际上识别到128个虚拟CPU或线程数,而不是物理CPU核心数量。这个现象通常由以下几个原因造成:

  1. 超线程技术(Hyper-Threading)

    • 处理器 Intel Xeon Platinum 8336C 支持 超线程技术(Hyper-Threading,HT)。每个物理核心可以通过 HT 支持多个线程。

    • 每个物理核心 (Core(s) per socket: 32) 可以运行 2 个线程 (Thread(s) per core: 2)。

    • 因此,2 个物理 CPU 插槽(Socket(s): 2)和每个插槽 32 个核心就提供了 32 * 2 = 64 个线程(每个物理核心有 2 个线程)。

    • 因此,在两个 CPU 插槽上,系统总共有 64 * 2 = 128 个虚拟核心(线程)。

  2. 虚拟 CPU 数量与物理核心数量的差异

    • 物理 CPU 插槽数量:2

    • 每个 CPU 插槽的核心数:32

    • 每个核心支持线程数:2(超线程)

    • 所以,系统看到的 128 个虚拟 CPU 是因为启用了超线程(Hyper-Threading),它使得每个物理核心能够处理两个独立的线程。

  3. NUMA 配置(用于CPU间数据交换的组)

    • 输出中显示有 2 个 NUMA 节点:

    • NUMA node0 CPU(s): 0-31, 64-95

    • NUMA node1 CPU(s): 32-63, 96-127

    • 这意味着两个 NUMA 节点分别使用了不同的 CPU 范围。例如,节点0包含 0-31 和 64-95 的 CPU 核心,而节点1包含 32-63 和 96-127 的 CPU 核心。NUMA 配置表示内存访问策略和 CPU 核心的关联,也对并行计算有影响,特别是在大型多线程计算中。

(5)lscpu查看一些信息(包括 cache 和 cpu)
部分输出如下:

CPU(s):                  128
Core(s) per socket: 32
Thread(s) per core: 2
Socket(s):           2  // 这里的socke指的是实际CPU数量
L1d:                   3 MiB (64 instances)
L1i:                   2 MiB (64 instances)

其中L1d cache有64个实例,也就是说我每个物理core都有一个自己的L1d,大小都为3MiB。每个物理核心(Core)有独立的 L1d 和 L1i 缓存。两个逻辑核心(Hyper-Threading)共享同一个物理核心的 L1d 和 L1i 缓存。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/498538.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NVR小程序接入平台EasyNVR使用FFmpeg取流时提示错误是什么原因呢?

在视频监控系统中,FFmpeg常用于从各种源(如摄像头、文件、网络流等)获取流媒体数据,这个过程通常称为“取流”。 在EasyNVR平台中,使用FFmpeg取流是一种常见的操作。FFmpeg作为一款强大的开源多媒体处理工具&#xff…

NXP i.MX8系列平台开发讲解 - 5.4 调试篇 - 掌握perf 工具调试(一)

专栏文章目录传送门:返回专栏目录 Hi, 我是你们的老朋友,主要专注于嵌入式软件开发,有兴趣不要忘记点击关注【码思途远】 文章目录 目录 掌握perf 工具调试(一) 1. Perf 工具介绍 1.1 Perf 工作原理 1.2 Perf 工具基本功能 2. Perf 安…

实际部署Dify可能遇到的问题:忘记密码、开启HTTPS、知识库文档上传的大小限制和数量限制

背景 前面我们以 docker compose 容器化的方式本地部署了 Dify 社区版,并快速体验了其聊天助手、工作量编排以及智能体(Agent)功能。不过后续实际生产环境使用时遇到了忘记密码、如何开启SSL以支持HTTPS、如何突破知识库文档上传的大小限制和…

Python 青铜宝剑十六维,破医疗数智化难关(上)

一、医疗数智化困境剖析 在当今数智化浪潮的席卷下,医疗行业正经历着深刻变革,医疗数智化转型已成为不可阻挡的趋势。它将现代信息技术深度融入医疗的各个环节,从电子病历的广泛普及,实现医疗信息的便捷存储与快速查阅&#xff0…

Kafka 性能提升秘籍:涵盖配置、迁移与深度巡检的综合方案

文章目录 1.1.网络和io操作线程配置优化1.2.log数据文件刷盘策略1.3.日志保留策略配置1.4.replica复制配置1.5.配置jmx服务1.6.系统I/O参数优化1.6.1.网络性能优化1.6.2.常见痛点以及优化方案1.6.4.优化参数 1.7.版本升级1.8.数据迁移1.8.1.同集群broker之间迁移1.8.2.跨集群迁…

易基因: BS+ChIP-seq揭示DNA甲基化调控非编码RNA(VIM-AS1)抑制肿瘤侵袭性|Exp Mol Med

大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。 肝细胞癌(hepatocellular carcinoma,HCC)早期复发仍然是一个具有挑战性的领域,其中涉及的机制尚未完全被理解。尽管微血管侵犯&#xff08…

代码随想录算法【Day7】

DAY7 454.四数相加II 特点: 1.只用返回元组的个数,而不用返回具体的元组 2.可以不用去重 暴力思路:遍历,这样时间复杂度会达到O(n^4) 标准思路:用哈希法(场景:在一个集合里面判断一个元素…

[TOTP]android kotlin实现 totp身份验证器 类似Google身份验证器

背景:自己或者公司用一些谷歌身份验证器或者microsoft身份验证器,下载来源不明,或者有广告,使用不安全。于是自己写一个,安全放心使用。 代码已开源:shixiaotian/sxt-android-totp: android totp authenti…

Type c系列接口驱动电路·内置供电驱动电路使用USB2.0驱动电路!!!

目录 前言 Type c常见封装类型 Type c引脚功能详解 Type c常见驱动电路详解 Type c数据手册 ​​​​​​​ ​​​​​​​ 编写不易,仅供学习,请勿搬运,感谢理解 常见元器件驱动电路文章专栏连接 LM7805系列降压芯片驱动电路…

【竞技宝】LOL:IG新赛季分组被质疑

北京时间2024年12月31日,今天已经2024年的最后一天,在进入一月之后,英雄联盟将迎来全新的2025赛季。而目前新赛季第一阶段的抽签结果已经全部出炉,其中人气最高的IG战队在本次抽签中抽到了“绝世好签”引来了网友们的质疑。 首先介…

【大模型实战篇】Mac本地部署RAGFlow的踩坑史

1. 题外话 最近一篇文章还是在11月30日写的,好长时间没有打卡了。最近工作上的事情特别多,主要聚焦在大模型的预训练、微调和RAG两个方面。主要用到的框架是Megatron-DeepSpeed,后续会带来一些分享。今天的文章主要聚焦在RAG。 近期调研了一系…

Prompt工程--AI开发--可置顶粘贴小工具

PROMPT 1.背景要求:我需要开发一个简单的粘贴小工具,用于方便地粘贴和管理文本内容。该工具需要具备以下功能:粘贴功能:提供一个文本框,用户可以粘贴内容。窗口置顶:支持窗口置顶功能,确保窗口…

FPGA自学之路:到底有多崎岖?

FPGA,即现场可编程门阵列,被誉为硬件世界的“瑞士军刀”,其灵活性和可编程性让无数开发者为之倾倒。但谈及FPGA的学习难度,不少人望而却步。那么,FPGA自学之路到底有多崎岖呢? 几座大山那么高?…

它真的可以绕过 ICloud 激活吗

作为最著名的越狱辅助应用程序之一,3u工具 非常出色地将各种越狱工具和功能集成到一个应用程序中。除了越狱之外,3u工具 有时也被认为是 iCloud 激活锁绕过工具。 但3u工具真的能绕过激活锁吗? 如果没有的话还有其他的应用吗? 这…

手写顺序流程图组件

效果图 完整代码 <template><div><div class"container" :style"{ width: ${spacingX * (colNum - 1) itemWidth * colNum}px }"><divv-for"(item, i) in recordList":key"i"class"list-box":style&…

SimForge HSF 案例分享|复杂仿真应用定制——UAVSim无人机仿真APP(技术篇)

导读 「神工坊」核心技术——「SimForge HSF高性能数值模拟引擎」支持工程计算应用的快速开发、自动并行&#xff0c;以及多域耦合、AI求解加速&#xff0c;目前已实现航发整机数值模拟等多个系统级高保真数值模拟应用落地&#xff0c;支持10亿阶、100w核心量级的高效求解。其低…

揭秘文件上传漏洞之操作原理(Thoughts on File Upload Vulnerabilities)

从上传到入侵&#xff1a;揭秘文件上传漏洞之操作原理 大家好&#xff0c;今天我们来聊一个"老而弥坚"的漏洞类型 —— 文件上传漏洞。虽然这个漏洞存在很多年了&#xff0c;但直到现在依然频频出现在各种漏洞报告中。今天我们就来深入了解一下它的原理和各种校验方…

网络安全 | 云安全与物联网(IoT)

网络安全 | 云安全与物联网&#xff08;IoT&#xff09; 一、前言二、云计算与物联网概述2.1 云计算2.2 物联网 三、物联网中的云安全需求与挑战3.1 数据安全3.2 网络安全3.3 身份认证与访问控制3.4 设备安全 四、云安全在物联网中的应对策略4.1 技术层面4.2 管理层面 五、案例…

FFmpeg:详细安装教程与环境配置指南

FFmpeg 部署完整教程 在本篇博客中&#xff0c;我们将详细介绍如何下载并安装 FFmpeg&#xff0c;并将其添加到系统的环境变量中&#xff0c;以便在终端或命令行工具中直接调用。无论你是新手还是有一定基础的用户&#xff0c;这篇教程都能帮助你轻松完成 FFmpeg 的部署。 一、…

基于Redis有序集合实现滑动窗口限流

滑动窗口算法是一种基于时间窗口的限流算法&#xff0c;它将时间划分为若干个固定大小的窗口&#xff0c;每个窗口内记录了该时间段内的请求次数。通过动态地滑动窗口&#xff0c;可以动态调整限流的速率&#xff0c;以应对不同的流量变化。 整个限流可以概括为两个主要步骤&a…