当然,让我们深入探讨一下JavaScript中的图数据结构,并列出一些常见的面试题及其代码示例。
图数据结构详解
图(Graph)是一种非线性的数据结构,由节点(也称为顶点)和连接这些节点的边组成。节点可以表示实体(如人、地点、事物等),而边则表示这些实体之间的关系。图可以分为有向图和无向图:
- 有向图(Directed Graph):边有方向,即从一个节点指向另一个节点。
- 无向图(Undirected Graph):边没有方向,表示两个节点之间的连接。
图的表示方法
-
邻接矩阵(Adjacency Matrix):
- 使用一个二维数组表示,如果节点i和节点j之间有边,则数组[i][j]为1(或边的权重),否则为0。
- 优点:查找边是否存在很快(O(1))。
- 缺点:空间复杂度较高,尤其是稀疏图(边的数量远小于节点对数量的图)。
-
邻接表(Adjacency List):
- 使用一个数组或链表数组表示,每个节点对应一个链表,链表中存储该节点连接的所有节点。
- 优点:空间复杂度较低,适合稀疏图。
- 缺点:查找边是否存在的时间复杂度较高(O(V))。
图的遍历
-
深度优先搜索(DFS, Depth-First Search):
- 使用栈(递归或显式栈)遍历节点,尽可能深入搜索每一个分支。
- 可以用递归或迭代实现。
-
广度优先搜索(BFS, Breadth-First Search):
- 使用队列逐层遍历节点。
- 常用于寻找最短路径(在无权图中)。
常见面试题及其代码
- 判断图是否有环(DFS)
function hasCycle(graph) {const visited = new Set();const recursionStack = new Set();function dfs(node) {if (recursionStack.has(node)) return true;if (visited.has(node)) return false;visited.add(node);recursionStack.add(node);for (const neighbor of graph[node] || []) {if (dfs(neighbor)) return true;}recursionStack.delete(node);return false;}for (const node in graph) {if (dfs(node)) return true;}return false;
}
- 图的深度优先遍历(DFS)
function dfsTraversal(graph, start, visited = new Set()) {if (visited.has(start)) return;visited.add(start);console.log(start);for (const neighbor of graph[start] || []) {dfsTraversal(graph, neighbor, visited);}
}
- 图的广度优先遍历(BFS)
function bfsTraversal(graph, start) {const queue = [start];const visited = new Set();while (queue.length > 0) {const node = queue.shift();if (!visited.has(node)) {visited.add(node);console.log(node);for (const neighbor of graph[node] || []) {if (!visited.has(neighbor)) {queue.push(neighbor);}}}}
}
- 计算图的拓扑排序(Kahn’s Algorithm)
function topologicalSort(graph) {const inDegree = {};const result = [];const queue = [];// Initialize in-degree mapfor (const node in graph) {inDegree[node] = 0;}// Calculate in-degreesfor (const node in graph) {for (const neighbor of graph[node] || []) {inDegree[neighbor] = (inDegree[neighbor] || 0) + 1;}}// Enqueue nodes with zero in-degreefor (const node in inDegree) {if (inDegree[node] === 0) {queue.push(node);}}// Process nodeswhile (queue.length > 0) {const node = queue.shift();result.push(node);for (const neighbor of graph[node] || []) {inDegree[neighbor]--;if (inDegree[neighbor] === 0) {queue.push(neighbor);}}}// If there was a cycle, not all nodes would be visitedreturn result.length === Object.keys(graph).length ? result : [];
}
- 计算所有节点对之间的最短路径(Floyd-Warshall Algorithm)
function floydWarshall(graph) {const n = Object.keys(graph).length;const dist = JSON.parse(JSON.stringify(graph));for (let k = 0; k < n; k++) {for (let i = 0; i < n; i++) {for (let j = 0; j < n; j++) {if (dist[i][k] !== Infinity && dist[k][j] !== Infinity && dist[i][k] + dist[k][j] < dist[i][j]) {dist[i][j] = dist[i][k] + dist[k][j];}}}}return dist;
}
- 检测二分图(Bipartite Graph)
function isBipartite(graph) {const colors = {};const queue = [];function bfs(node, color) {colors[node] = color;queue.push(node);while (queue.length > 0) {const currentNode = queue.shift();const currentColor = colors[currentNode];for (const neighbor of graph[currentNode] || []) {if (!colors[neighbor]) {colors[neighbor] = -currentColor;queue.push(neighbor);} else if (colors[neighbor] === currentColor) {return false;}}}return true;}for (const node in graph) {if (!colors[node]) {if (!bfs(node, 1)) {return false;}}}return true;
}
- 图的最小生成树(Prim’s Algorithm)
function primMST(graph) {const n = Object.keys(graph).length;const key = new Array(n).fill(Infinity);const parent = new Array(n).fill(-1);const inMST = new Array(n).fill(false);key[0] = 0;parent[0] = -1;for (let count = 0; count < n - 1; count++) {let u = -1, min = Infinity;for (let v = 0; v < n; v++) {if (!inMST[v] && key[v] < min) {u = v;min = key[v];}}inMST[u] = true;for (const v of graph[u] || []) {if (!inMST[v] && graph[u][v] < key[v]) {parent[v] = u;key[v] = graph[u][v];}}}// Construct MSTconst mst = [];for (let i = 1; i < n; i++) {mst.push([parent[i], i, graph[parent[i]][i]]);}return mst;
}
}
图的克鲁斯克尔算法(Kruskal’s Algorithm)
class UnionFind {constructor(n) {this.parent = new Array(n);for (let i = 0; i < n; i++) {this.parent[i] = i;}}find(u) {if (this.parent[u] !== u) {this.parent[u] = this.find(this.parent[u]); // 路径压缩,使得后续查找更快}return this.parent[u];}union(u, v) {let rootU = this.find(u);let rootV = this.find(v);if (rootU !== rootV) {this.parent[rootU] = rootV;}}
}function kruskalMST(graph) {// 图的表示:graph = [ [u, v, weight], ... ]let edges = graph.slice().sort((a, b) => a[2] - b[2]); // 排序边let n = new Set(); // 存储所有顶点for (let edge of edges) {n.add(edge[0]);n.add(edge[1]);}let uf = new UnionFind(n.size);let mst = [];let mstCost = 0;for (let edge of edges) {let u = edge[0];let v = edge[1];let weight = edge[2];if (uf.find(u) !== uf.find(v)) {uf.union(u, v);mst.push(edge);mstCost += weight;}}return {mst: mst,cost: mstCost};
}// 示例使用
let graph = [[0, 1, 10],[0, 2, 6],[0, 3, 5],[1, 3, 15],[2, 3, 4]
];let result = kruskalMST(graph);
console.log("Edges in MST:", result.mst);
console.log("Total cost of MST:", result.cost);