基于动力学的MPC控制器设计盲点解析

文章目录

    • Apollo MPC控制器的设计架构
    • 误差模型和离散化
    • 预测模型推导
    • 目标函数和约束设计
    • 优化求解
    • 优化OSQP求解器
    • 参考文献

Apollo MPC控制器的设计架构

误差模型和离散化

状态变量和控制变量

1、Apollo MPC控制器中状态变量主要有如下6个

  matrix_state_ = Matrix::Zero(basic_state_size_, 1);// State matrix update;matrix_state_(0, 0) = debug->lateral_error();matrix_state_(1, 0) = debug->lateral_error_rate();matrix_state_(2, 0) = debug->heading_error();matrix_state_(3, 0) = debug->heading_error_rate();matrix_state_(4, 0) = debug->station_error();matrix_state_(5, 0) = debug->speed_error();

状态变量计算:

控制变量有两个:

其中\delta _{_{f}} 为前轮转角,a为加速度补偿

  Eigen::MatrixXd control_matrix(controls_, 1);control_matrix << 0, 0;

在代码中控制量的计算和输出

// 解mpc,输出一个vector,control内有10个control_matrix
SolveLinearMPC(matrix_ad_, matrix_bd_, matrix_cd_, matrix_q_updated_,matrix_r_updated_, lower_bound, upper_bound, matrix_state_, reference,mpc_eps_, mpc_max_iteration_, &control)
// 已知,mpc仅取第一组解为当前时刻最优控制解,即control[0]
// steer_single_direction_max_degree_ --- the maximum turn of steer
// control中第一个矩阵中的第一个值用于计算方向盘转角
double steer_angle_feedback = control[0](0, 0) * 180 / M_PI *steer_transmission_ratio_ /steer_single_direction_max_degree_ * 100;double steer_angle = steer_angle_feedback + steer_angle_feedforwardterm_updated_ +steer_angle_ff_compensation + steer_angle_feedback_augment;// control中第一个矩阵中的第二个值control[0](1, 0),用于计算加速度 = 加速度补偿 + 期望加速度 + 坡度加速度补偿
debug->set_acceleration_cmd_closeloop(control[0](1, 0));
double acceleration_cmd = control[0](1, 0) + debug->acceleration_reference() + control_conf_.enable_slope_offset() * debug->slope_offset_compensation();

动力学误差模型

代码实现:

// 初始化矩阵
Status MPCController::Init(const ControlConf *control_conf) {...// Matrix init operations.matrix_a_ = Matrix::Zero(basic_state_size_, basic_state_size_);matrix_ad_ = Matrix::Zero(basic_state_size_, basic_state_size_);...// TODO(QiL): expand the model to accomendate more combined states.matrix_a_coeff_ = Matrix::Zero(basic_state_size_, basic_state_size_);...matrix_b_ = Matrix::Zero(basic_state_size_, controls_);matrix_bd_ = Matrix::Zero(basic_state_size_, controls_);...matrix_bd_ = matrix_b_ * ts_;matrix_c_ = Matrix::Zero(basic_state_size_, 1);...matrix_cd_ = Matrix::Zero(basic_state_size_, 1);...}// 更新矩阵
void MPCController::UpdateMatrix(SimpleMPCDebug *debug) {const double v = VehicleStateProvider::instance()->linear_velocity();matrix_a_(1, 1) = matrix_a_coeff_(1, 1) / v;matrix_a_(1, 3) = matrix_a_coeff_(1, 3) / v;matrix_a_(3, 1) = matrix_a_coeff_(3, 1) / v;matrix_a_(3, 3) = matrix_a_coeff_(3, 3) / v;Matrix matrix_i = Matrix::Identity(matrix_a_.cols(), matrix_a_.cols());matrix_ad_ = (matrix_i + ts_ * 0.5 * matrix_a_) *(matrix_i - ts_ * 0.5 * matrix_a_).inverse();matrix_c_(1, 0) = (lr_ * cr_ - lf_ * cf_) / mass_ / v - v;matrix_c_(3, 0) = -(lf_ * lf_ * cf_ + lr_ * lr_ * cr_) / iz_ / v;matrix_cd_ = matrix_c_ * debug->heading_error_rate() * ts_;
}// 求解MPC
// discrete linear predictive control solver, with control format
// x(i + 1) = A * x(i) + B * u (i) + C
bool SolveLinearMPC(const Matrix &matrix_a, const Matrix &matrix_b,const Matrix &matrix_c, const Matrix &matrix_q,const Matrix &matrix_r, const Matrix &matrix_lower,const Matrix &matrix_upper,const Matrix &matrix_initial_state,const std::vector<Matrix> &reference, const double eps,const int max_iter, std::vector<Matrix> *control) 

apollo使用的是双线性变换离散法的方法:

  matrix_ad_ = (matrix_i + ts_ * 0.5 * matrix_a_) *(matrix_i - ts_ * 0.5 * matrix_a_).inverse();matrix_bd_ = matrix_b_ * ts_;matrix_cd_ = matrix_c_ * debug->heading_error_rate() * ts_;

补充:

Apollo采用的中点欧拉法和向前欧拉法的结合:

预测模型推导

为什么不用上述推导出的离散化的状态空间方程来推导我们的预测模型,以此来设计MPC控制器?

主要考虑在设计目标函数的时候,想将我们的控制增量设计到我们的目标函数中去,而非直接使用控制量,控制增量为代价,能有效改善控制的平滑性

此处我们需要注意的是:

  • 控制步长为Nc,因此当预测步长为k+Nc+1时,此时预测状态y(k+Nc+1)的最后一项也只写到k+Nc-1。因为到k+Nc时刻及以后的控制量有两种处理策略第一种就是控制步长Nc之后的预测控制量保持不变;第二种就是Nc之后的预测控制量全部置零。我们此处达到控制步长之后的控制量全置零;
  • 最终推导出的系统的预测模型Y, 其可以根据系统当前的状态量,以及施加一个未来一段时间Nc序列的控制增量,我们就可以知道系统未来(Np步)的表现是什么样子的(系统输出),即y(k+1)~y(k+Np);

目标函数和约束设计

设计目标:

  • 希望我们的路径跟踪误差在预测时域内尽可能趋于0,也即希望目标函数的第一项的几个状态量尽可能趋于0,这样我们的车辆才能更好的跟随规划路径;
  • 其次,我们希望目标函数的第二项控制增量的代价越小越好,也即希望前后两帧的控制量变化越小越好,这样控制的效果越平滑,对应前轮转角和加速度变化越平滑;
  • 目标函数最后一项引入松弛因子(在程序中是一个具体的数值),其主要作用就是改善优化问题的可行解,提高求解效率;

在MPC控制规律中,将控制序列中的第一个参数作为控制量,输入给被控系统。

对于车辆控制来说,就是找到一组合适的控制量,如u = [\delta _{f},a]其中\delta _{_{f}} 为前轮转角,a为刹车/油门系数,使车辆沿参考轨迹行驶,且误差最小、控制最平稳、舒适度最高等。因此在设计目标函数的时候可以考虑以下几点:

1、设计代价函数时候,一般设计为二次型的样式,为的是避免在预测时域内,误差忽正忽负,导致误差相互抵消;

2、考虑的代价主要有如下:

  • 横向误差:指实际轨迹点与参考轨迹点间的距离;
  • 航向误差:车辆当前航向与参考轨迹点航向的偏差;
  • 速度误差:车辆当前速度与规划轨期望车速的偏差;
  • 刹车/油门调节量:目的是为了保证刹车/油门变化的平稳性;

3、约束条件:

  • 最大前轮转角
  • 最大前轮转角变化量
  • 最大刹车/油门调节量
  • 最大方向盘转角
  • 最大车速
  • 最大加速度等

此处关于控制增量的约束,比如说,我们的前轮转角打30°需要2s,则1s需要打15°,然而我们的控制周期T=0.05s,则控制周期我们需要下发的转角最大为0.75°,也即我们下发转角的最大速率不超过0.75°/T。

关于软约束,也即代价函数,使其值越小越好。

优化求解

滚动优化求解的目的是为了求最优控制解,是一种在线优化,它每一时刻都会针对当前误差重新计算控制量,通过使某一或某些性能指标达到最优来实现控制作用。因此,滚动优化可能不会得到全局最优解,但是却能对每一时刻的状态进行最及时的响应,达到局部最优。

第一步:目标函数如何转化为标准二次型

注意:

目标函数化简后的每一项其实都是一个具体的数,第三项表示具体数的转置等于其自身。因此合并第二项和第三项,二者实质相等。其次化成二次型后,G属于已知项,且Q也是已知项,故二次型的最后一项其实不影响最终的优化求解最小值问题,因此放在最后一项,且求解过程可以忽略

第二步:约束的转化

u(k)^{*}作为此时的控制量输入给系统,直到下一个控制时刻,系统根据新的状态信息预测下一时段内的输出,然后通过优化得到一组新的控制序列。如此反复,直至完成整个控制过程。

OSQP求解器

带参构造函数MpcOsqp 求解

输入矩阵Ad,Bd,Q,R,初始状态阵X0,控制量上下边界,状态量上下边界,参考状态(0矩阵),最大迭代次数mpc_max_iteration_,预测时域周期数horizon_,求解精度mpc_eps_,用输入参数去初始化类对象的数据成员

MpcOsqp::MpcOsqp(const Eigen::MatrixXd &matrix_a,const Eigen::MatrixXd &matrix_b,const Eigen::MatrixXd &matrix_q,const Eigen::MatrixXd &matrix_r,const Eigen::MatrixXd &matrix_initial_x,const Eigen::MatrixXd &matrix_u_lower,const Eigen::MatrixXd &matrix_u_upper,const Eigen::MatrixXd &matrix_x_lower,const Eigen::MatrixXd &matrix_x_upper,const Eigen::MatrixXd &matrix_x_ref, const int max_iter,const int horizon, const double eps_abs): matrix_a_(matrix_a),matrix_b_(matrix_b),matrix_q_(matrix_q),matrix_r_(matrix_r),matrix_initial_x_(matrix_initial_x),matrix_u_lower_(matrix_u_lower),matrix_u_upper_(matrix_u_upper),matrix_x_lower_(matrix_x_lower),matrix_x_upper_(matrix_x_upper),matrix_x_ref_(matrix_x_ref),max_iteration_(max_iter),horizon_(horizon),eps_abs_(eps_abs) {state_dim_ = matrix_b.rows();control_dim_ = matrix_b.cols();ADEBUG << "state_dim" << state_dim_;ADEBUG << "control_dim_" << control_dim_;num_param_ = state_dim_ * (horizon_ + 1) + control_dim_ * horizon_;
}

OSQP求解结果输出:

 std::vector<double> control_cmd(controls_, 0);apollo::common::math::MpcOsqp mpc_osqp(matrix_ad_, matrix_bd_, matrix_q_updated_, matrix_r_updated_,matrix_state_, lower_bound, upper_bound, lower_state_bound,upper_state_bound, reference_state, mpc_max_iteration_, horizon_,mpc_eps_);
//取控制序列的第一个作为输出的控制量if (!mpc_osqp.Solve(&control_cmd)) {AERROR << "MPC OSQP solver failed";} else {ADEBUG << "MPC OSQP problem solved! ";control[0](0, 0) = control_cmd.at(0);control[0](1, 0) = control_cmd.at(1);}//第一个元素前轮反馈转角steer_angle_feedback = Wheel2SteerPct(control[0](0, 0));//第二个元素加速度补偿acc_feedback = control[0](1, 0);

参考文献

本文针对运动学MPC控制器进行回顾总结,详细可以参考下述文献。

1、【基础】自动驾驶控制算法第五讲 连续方程的离散化与离散LQR原理_哔哩哔哩_bilibili

2、基于MPC轨迹跟踪~理论篇上_哔哩哔哩_bilibili

3、Apollo代码学习(六)—模型预测控制(MPC)_apollo mpc-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/502156.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2025/1/1 路由期末复习作业二

呼呼呼祝大家元旦节快乐啦&#xff01;&#xff08;我顶着我超重的黑眼圈说&#xff09; 昨天一个人在寝室一边吃泡面&#xff0c;一边看步步惊心&#xff0c;一边吃一边哭呜呜呜呜呜若曦为什么不和八爷在一起好好爱&#xff0c;就因为他不当皇帝蛮&#xff01;难测最是帝王心…

面试题解,JVM中的“类加载”剖析

一、JVM类加载机制说一下 其中&#xff0c;从加载到初始化就是我们的类加载阶段&#xff0c;我们逐一来分析 加载 “加载 loading”是整个类加载&#xff08;class loading&#xff09;过程的一个阶段&#xff0c;加载阶段JVM需要完成以下 3 件事情&#xff1a; 1&#xff0…

后端开发-Maven

环境说明&#xff1a; windows系统&#xff1a;11版本 idea版本&#xff1a;2023.3.2 Maven 介绍 Apache Maven 是一个 Java 项目的构建管理和理解工具。Maven 使用一个项目对象模型&#xff08;POM&#xff09;&#xff0c;通过一组构建规则和约定来管理项目的构建&#xf…

UML之泛化、特化和继承

在UML&#xff08;统一建模语言&#xff09;中&#xff0c;泛化&#xff08;Generalization&#xff09;和特化&#xff08;Specialization&#xff09;是面向对象思想中继承&#xff08;Inheritance&#xff09;关系的重要概念&#xff0c;它们描述类与类&#xff08;或用例与…

【时时三省】(C语言基础)常见的动态内存错误2

山不在高&#xff0c;有仙则名。水不在深&#xff0c;有龙则灵。 ----CSDN 时时三省 对非动态开辟空间内存使用free释放 示例&#xff1a; 这个arr数组是在栈上的 *p指向的就是arr 对非动态空间也用了free ferr只能在动态开辟空间使用 使用free释放一块动态开辟空间的一部分…

leecode718.最长重复子数组

二维空间版 class Solution { public:int findLength(vector<int>& nums1, vector<int>& nums2) {int mnums1.size(),nnums2.size();vector<vector<int>> dp(m,vector<int>(n));int result0;for(int i0;i<m;i)if(nums1[i]nums2[0]){…

「Mac畅玩鸿蒙与硬件54」UI互动应用篇31 - 滑动解锁屏幕功能

本篇教程将实现滑动解锁屏幕功能&#xff0c;通过 Slider 组件实现滑动操作&#xff0c;学习事件监听、状态更新和交互逻辑的实现方法。 关键词 滑动解锁UI交互状态管理动态更新事件监听 一、功能说明 滑动解锁屏幕功能包含以下功能&#xff1a; 滑动解锁区域&#xff1a;用…

电子应用设计方案86:智能 AI背景墙系统设计

智能 AI 背景墙系统设计 一、引言 智能 AI 背景墙系统旨在为用户创造一个动态、个性化且具有交互性的空间装饰体验&#xff0c;通过融合先进的技术和创意设计&#xff0c;提升室内环境的美观度和功能性。 二、系统概述 1. 系统目标 - 提供多种主题和风格的背景墙显示效果&…

基于物联网疫苗冷链物流监测系统设计

1. 项目开发背景 随着全球对疫苗运输要求的提高&#xff0c;特别是针对温度敏感型药品&#xff08;如疫苗&#xff09;的冷链管理&#xff0c;如何保证疫苗在运输过程中的温度、湿度、震动等环境因素的稳定性已成为亟需解决的问题。疫苗运输过程中&#xff0c;任何温度或湿度的…

Trimble天宝X9三维扫描仪为建筑外墙检测提供了全新的解决方案【沪敖3D】

随着城市化进程的快速推进&#xff0c;城市高层建筑不断增多&#xff0c;对建筑质量的要求也在不断提高。建筑外墙检测&#xff0c;如平整度和垂直度检测&#xff0c;是衡量建筑质量的重要指标之一。传统人工检测方法不仅操作繁琐、效率低下&#xff0c;还难以全面反映墙体的真…

瑞吉外卖项目学习笔记(十)修改套餐、删除套餐、起售和停售套餐

瑞吉外卖项目学习笔记(一)准备工作、员工登录功能实现 瑞吉外卖项目学习笔记(二)Swagger、logback、表单校验和参数打印功能的实现 瑞吉外卖项目学习笔记(三)过滤器实现登录校验、添加员工、分页查询员工信息 瑞吉外卖项目学习笔记(四)TableField(fill FieldFill.INSERT)公共字…

Python 实时获取Linux服务器信息

在进行服务器监控、运维管理时&#xff0c;实时获取服务器信息至关重要。特别是在 Linux 环境下&#xff0c;我们常常需要获取系统的运行状态、资源占用情况以及硬件信息。如果你是运维人员、开发者或是正在做自动化运维任务的人&#xff0c;那么如何高效地实时获取 Linux 服务…

MATLAB程序转C# WPF,dll集成,混合编程

工作中遇到一个需求&#xff0c;有一部分算法的代码需要MATLAB来进行处理&#xff0c;而最后需要集成到C#中的wpf项目中去&#xff0c;选择灵活性更高的dll&#xff0c;去进行集成。&#xff08;可以简单理解为&#xff1a;将MATLAB的函数&#xff0c;变为C#中类的函数成员&…

「Mac畅玩鸿蒙与硬件49」UI互动应用篇26 - 数字填色游戏

本篇教程将带你实现一个数字填色小游戏&#xff0c;通过简单的交互逻辑&#xff0c;学习如何使用鸿蒙开发组件创建趣味性强的应用。 关键词 UI互动应用数字填色动态交互逻辑判断游戏开发 一、功能说明 数字填色小游戏包含以下功能&#xff1a; 数字选择&#xff1a;用户点击…

深入理解 pytest Fixture 方法及其应用

在 Python 自动化测试领域&#xff0c;pytest 是当之无愧的王者。提到 pytest&#xff0c;不得不说它的一大核心功能——Fixture。Fixture 的强大&#xff0c;让复杂的测试流程变得井井有条&#xff0c;让测试代码更加灵活和可复用。 那么&#xff0c;pytest 的 Fixture 究竟是…

【AI编辑器】Cursor与DeepSeek模型的集成:提升开发效率的新选择

目录 一、为什么选择DeepSeek模型 1.1 模型参数与训练 1.2 技术创新 1、FP8格式介绍 2、FP8混合精度训练的优势 3、FP8混合精度训练的技术要点 4、FP8混合精度训练的应用与挑战 1.3 性能表现 1.4 应用与部署 1.5 争议与前景 二、注册DeepSeek账号并获取API Key 三、…

什么情况会导致JVM退出?

大家好&#xff0c;我是锋哥。今天分享关于【什么情况会导致JVM退出?】面试题。希望对大家有帮助&#xff1b; 什么情况会导致JVM退出? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 JVM&#xff08;Java Virtual Machine&#xff09;在不同情况下可能会退出&am…

软件工程实验-实验2 结构化分析与设计-总体设计和数据库设计

一、实验内容 1. 绘制工资支付系统的功能结构图和数据库 在系统设计阶段&#xff0c;要设计软件体系结构&#xff0c;即是确定软件系统中每个程序是由哪些模块组成的&#xff0c;以及这些模块相互间的关系。同时把模块组织成良好的层次系统&#xff1a;顶层模块通过调用它的下层…

《Rust权威指南》学习笔记(三)

泛型和trait 1.泛型可以提高代码的复用能力&#xff0c;泛型是具体类型或其他属性的抽象代替&#xff0c;可以看成是一种模版&#xff0c;一个占位符&#xff0c;编译器在编译时会将这些占位符替换成具体的类型&#xff0c;这个过程叫做“单态化”&#xff0c;所以使用泛型的…

计算机网络基础(7)中科大郑铨老师笔记

应用层 目标&#xff1a;  网络应用的 原理&#xff1a;网络应用协议的概念和实现方面 传输层的服务模型 客户-服务器模式 对等模式(peerto-peer) 内容分发网络  网络应用的 实例&#xff1a;互联网流行的应用层协 议  HTTP  FTP  SMTP / POP3 / IMAP  DNS…