数据仓库中的指标体系模型介绍

数据仓库中的指标体系介绍


文章目录

  • 数据仓库中的指标体系介绍
  • 前言
  • 什么是指标体系
  • 指标体系设计有哪些模型?
    • 1. 指标分层模型
    • 2. 维度模型
    • 3. 指标树模型
    • 4. KPI(关键绩效指标)模型
    • 5. 主题域模型
    • 6.平衡计分卡(BSC)模型
    • 7.数据指标框架模型(Metrics Framework)
    • 8.时间序列模型
    • 9.分层分级指标模型
    • 10. Objective-Strategy-Metrics(OSM)模型
    • 11. UJM 模型(User Journey Metrics 模型)
  • 总结


前言

数据仓库的指标体系(或指标体系设计)通常属于 数据建模阶段 的一部分。具体来说,它属于数据仓库构建的以下步骤:

需求分析阶段–>指标体系设计–>数据建模阶段–>数据加载与计算–>数据展示与分析

什么是指标体系

指标体系

在这里插入图片描述

指标体系设计有哪些模型?

我基于 Oracle 11g 数据库中 SCOTT 用户 的表(如 EMP、DEPT、SALGRADE 等),针对每种指标体系拆解模型举的具体实例:

1. 指标分层模型

应用场景: 构建企业组织中的分层指标体系。
案例:
战略层: 提升公司总薪资水平(如平均薪资增长 10%)。
战术层: 按部门分析各部门平均薪资的增长(DEPT 表中的部门)。
运营层: 按员工分析个人薪资的增长(EMP 表中的员工薪资)

-- 查询战略层(全公司平均薪资)
SELECT AVG(SAL) AS AVG_SAL FROM EMP;-- 查询战术层(按部门分层)
SELECT DNAME, AVG(SAL) AS AVG_SAL FROM EMP E JOIN DEPT D ON E.DEPTNO = D.DEPTNO GROUP BY DNAME;-- 查询运营层(每位员工的薪资)
SELECT EMPNO, ENAME, SAL FROM EMP;

2. 维度模型

应用场景: 通过事实表和维度表分析员工薪资。
案例:
事实表: EMP 表中的薪资(SAL)。
维度表:
部门维度:DEPT 表(部门编号、部门名称、部门位置)。
时间维度:假设有 HIREDATE(入职时间)。

-- 部门维度分析:按部门统计薪资总和
SELECT D.DNAME, SUM(E.SAL) AS TOTAL_SAL 
FROM EMP E 
JOIN DEPT D ON E.DEPTNO = D.DEPTNO 
GROUP BY D.DNAME;-- 时间维度分析:按年份统计薪资总和
SELECT TO_CHAR(HIREDATE, 'YYYY') AS YEAR, SUM(SAL) AS TOTAL_SAL 
FROM EMP 
GROUP BY TO_CHAR(HIREDATE, 'YYYY');

3. 指标树模型

应用场景: 分解总薪资指标。
案例:
顶层指标: 全公司薪资总额。
中间层: 部门薪资总额。
底层指标: 员工个人薪资。

-- 顶层指标
SELECT SUM(SAL) AS TOTAL_SAL FROM EMP;-- 中间层指标
SELECT DNAME, SUM(SAL) AS DEPT_TOTAL_SAL 
FROM EMP E JOIN DEPT D ON E.DEPTNO = D.DEPTNO 
GROUP BY DNAME;-- 底层指标
SELECT EMPNO, ENAME, SAL FROM EMP;

4. KPI(关键绩效指标)模型

应用场景: 绩效考核中使用的核心指标。
案例:
目标: 提升员工工作效率。
KPI:
员工平均薪资。
工资高于 3000 的员工占比。

-- KPI 1: 员工平均薪资
SELECT AVG(SAL) AS AVG_SAL FROM EMP;-- KPI 2: 工资高于 3000 的员工占比
SELECT ROUND(COUNT(CASE WHEN SAL > 3000 THEN 1 END) * 100 / COUNT(*), 2) AS PERCENTAGE 
FROM EMP;

5. 主题域模型

应用场景: 按主题域分类管理指标。
案例:
薪资域: 薪资总额、平均薪资。
部门域: 每个部门的员工人数、部门平均薪资。
时间域: 员工入职年份分布。

-- 薪资域:总薪资、平均薪资
SELECT SUM(SAL) AS TOTAL_SAL, AVG(SAL) AS AVG_SAL FROM EMP;-- 部门域:每部门员工人数和平均薪资
SELECT DNAME, COUNT(*) AS EMP_COUNT, AVG(SAL) AS AVG_SAL 
FROM EMP E JOIN DEPT D ON E.DEPTNO = D.DEPTNO 
GROUP BY DNAME;-- 时间域:按入职年份统计员工人数
SELECT TO_CHAR(HIREDATE, 'YYYY') AS YEAR, COUNT(*) AS EMP_COUNT 
FROM EMP 
GROUP BY TO_CHAR(HIREDATE, 'YYYY');

6.平衡计分卡(BSC)模型

应用场景: 全面衡量企业运营的多个维度。
案例:
财务视角: 全公司薪资总额。
客户视角: 每部门员工人数(部门为“客户”)。
内部流程视角: 员工工龄分布。
学习与成长视角: 员工平均奖金(COMM 字段)。

-- 财务视角:薪资总额
SELECT SUM(SAL) AS TOTAL_SAL FROM EMP;-- 客户视角:每部门员工人数
SELECT DNAME, COUNT(*) AS EMP_COUNT 
FROM EMP E JOIN DEPT D ON E.DEPTNO = D.DEPTNO 
GROUP BY DNAME;-- 内部流程视角:员工工龄分布
SELECT FLOOR(MONTHS_BETWEEN(SYSDATE, HIREDATE)/12) AS YEARS_OF_SERVICE, COUNT(*) AS EMP_COUNT 
FROM EMP 
GROUP BY FLOOR(MONTHS_BETWEEN(SYSDATE, HIREDATE)/12);-- 学习与成长视角:员工平均奖金
SELECT AVG(COMM) AS AVG_COMM FROM EMP WHERE COMM IS NOT NULL;

7.数据指标框架模型(Metrics Framework)

应用场景: 指标从基础到聚合的层级。
案例:
原子指标: 每个员工的薪资。
衍生指标: 平均薪资。
聚合指标: 全公司薪资总额。

-- 原子指标
SELECT EMPNO, ENAME, SAL FROM EMP;-- 衍生指标
SELECT AVG(SAL) AS AVG_SAL FROM EMP;-- 聚合指标
SELECT SUM(SAL) AS TOTAL_SAL FROM EMP;

8.时间序列模型

应用场景: 按时间分析员工薪资的变化。
案例:
按年份统计入职员工的薪资总额和平均薪资。

SELECT TO_CHAR(HIREDATE, 'YYYY') AS YEAR, SUM(SAL) AS TOTAL_SAL, AVG(SAL) AS AVG_SAL 
FROM EMP 
GROUP BY TO_CHAR(HIREDATE, 'YYYY');

9.分层分级指标模型

应用场景: 按组织层级分解指标。
案例:
公司总薪资目标分为各部门目标,再分为员工目标

-- 公司总薪资
SELECT SUM(SAL) AS TOTAL_SAL FROM EMP;-- 部门薪资
SELECT DNAME, SUM(SAL) AS DEPT_TOTAL_SAL 
FROM EMP E JOIN DEPT D ON E.DEPTNO = D.DEPTNO 
GROUP BY DNAME;-- 员工薪资
SELECT EMPNO, ENAME, SAL FROM EMP;

10. Objective-Strategy-Metrics(OSM)模型

应用场景: 提升员工收入。
案例:
Objective(目标): 提高公司员工平均薪资。
Strategy(战略): 提高每部门的平均薪资。
Metrics(指标): 员工平均薪资、部门平均薪资

-- 公司平均薪资
SELECT AVG(SAL) AS AVG_SAL FROM EMP;-- 部门平均薪资
SELECT DNAME, AVG(SAL) AS DEPT_AVG_SAL 
FROM EMP E JOIN DEPT D ON E.DEPTNO = D.DEPTNO 
GROUP BY DNAME;

11. UJM 模型(User Journey Metrics 模型)

应用场景: 员工招聘和发展过程的分析。
案例:
旅程阶段:
吸引: 招聘的候选人数。
转化: 入职员工人数。
留存: 员工工作年限。
扩展: 员工晋升比例。

-- 吸引阶段:假设有招聘数据表
SELECT COUNT(*) AS CANDIDATE_COUNT FROM CANDIDATES;-- 转化阶段:入职人数
SELECT COUNT(*) AS HIRED_COUNT FROM EMP;-- 留存阶段:按工龄统计员工人数
SELECT FLOOR(MONTHS_BETWEEN(SYSDATE, HIREDATE)/12) AS YEARS_OF_SERVICE, COUNT(*) AS EMP_COUNT 
FROM EMP 
GROUP BY FLOOR(MONTHS_BETWEEN(SYSDATE, HIREDATE)/12);-- 扩展阶段:晋升员工人数占比(假设 `JOB` 字段中有 "MANAGER" 表示晋升)
SELECT ROUND(COUNT(CASE WHEN JOB = 'MANAGER' THEN 1 END) * 100 / COUNT(*), 2) AS PROMOTION_RATE 
FROM EMP;

总结

一、模型使用场景

模型名称主要使用场景
1. 指标分层模型适用于多层次管理场景,如公司战略目标、部门目标、运营目标逐级分解的场景。
2. 维度模型数据仓库或 BI 分析中,用于从多维角度(如时间、部门、员工)分析数据。
3. 指标树模型指标的层级分解与依赖分析,如总收入拆解为部门收入和区域收入。
4. KPI 模型关键绩效指标监控场景,如企业绩效考核或某项目的核心指标监控。
5. 主题域模型适合大型企业按业务主题划分指标体系,如财务、销售、客户、运营等。
6. 平衡计分卡(BSC)模型战略管理和全面绩效评估,如从财务、客户、流程、学习等多个视角评估企业绩效。
7. 数据指标框架模型复杂数据体系的指标标准化和全生命周期管理,用于企业建立统一的指标管理平台。
8. 时间序列模型动态分析指标随时间变化的趋势,适用于业务监控、预警系统、趋势预测场景。
9. 分层分级指标模型适按企业组织架构进行指标分层,如总部到区域分部到门店逐级分解指标。
10. Objective-Strategy-Metrics(OSM)模型从目标、战略、指标三个层次设计方案,适用于目标导向的战略管理场景。
11. UJM 模型用户行为分析场景,如互联网产品用户生命周期(吸引 → 转化 → 留存 → 扩展)相关指标分析。

二、模型的相同点

  • 目标明确性:

所有模型都以解决某一明确的业务问题为核心,如绩效提升、趋势分析、用户行为优化等。
例如:KPI 模型、OSM 模型、分层模型等都围绕目标进行分解或监控。

  • 数据指标化:

各模型都强调通过定量化指标(如薪资总额、留存率)来衡量目标和执行效果。
数据是模型的基础,通过清晰的指标定义和逻辑支持分析与评估。

  • 逻辑层次性:

多数模型具备层次性结构,比如指标分层模型、指标树模型、OSM 模型都强调指标的上下级关系。

  • 可监控与评估:

模型通过定义具体的衡量标准,便于对业务的执行过程进行持续监控与优化。

三、模型名称 特点(差异点)

模型名称特点(差异点)
1. 指标分层模型强调从战略层到运营层的指标逐级分解,适用于多层级的企业管理场景,特别是需要明确责任和目标的场景。
2. 维度模型侧重于从多个分析维度(如时间、部门、区域等)对数据进行统计分析,是数据仓库和 BI 分析的重要工具。
3. 指标树模型强调指标的分解路径和层级依赖关系,适合复杂业务场景中逐级分解目标和追溯来源。
4. KPI 模型聚焦于核心绩效指标,强调关键目标的少量指标监控,适用于简单、直接的目标评估场景。
5. 主题域模型按业务主题划分指标,适合大型企业或复杂组织按功能划分数据分析指标(如销售、财务等领域)。
6. 平衡计分卡(BSC)模型从多个视角(财务、客户、流程、学习)衡量目标完成情况,适用于全面绩效评估,适用场景较广但设计复杂度较高。
7. 数据指标框架模型强调指标的全生命周期管理(定义、使用、更新、维护),适合数据治理和标准化管理。
8. 时间序列模型侧重分析指标随时间的变化趋势,适合业务动态监控和预测,突出指标的时间维度。
9. 分层分级指标模型从组织架构分层和分级角度设计指标,适合跨层级、多级分支的企业环境。
10. OSM 模型从目标到战略再到指标逐层设计,逻辑递进清晰,适合目标导向型的企业战略管理场景。
11. UJM 模型基于用户旅程设计指标,突出用户行为分析和生命周期价值(如互联网行业中的用户留存和转化场景)。

四、总结

  • 相同点:

这些模型的核心思想都是为了更好地管理和分析数据,以支持业务目标的达成。
它们都通过指标的设计和分析,为业务提供决策支持。

  • 不同点:

视角不同:

如 平衡计分卡模型 是从多个维度综合评估,维度模型 则强调多维度数据的分析。 UJM 模型 从用户行为出发,而 分层模型
则更注重企业内部目标分解。

适用场景不同: 时间序列模型 适合时间动态监控场景,而 指标树模型 适合分解复杂指标。

复杂度不同: 简单模型如 KPI 模型 适合直接监控核心目标; 复杂模型如 数据指标框架模型 和 OSM 模型
需要全面的设计和较高的实现成本。

使用建议:

单独使用: 对于小型业务,建议采用如 KPI 模型 或 分层模型 等简单的模型。
结合使用: 对于复杂场景,可以结合多个模型使用,如用OSM 模型 制定战略目标,结合 KPI 模型 和 时间序列模型 监控关键指标,辅以 维度模型 和 指标树模型 支持多维分析。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/502620.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2025元旦源码免费送

我们常常在当下感到时间慢,觉得未来遥远,但一旦回头看,时间已经悄然流逝。对于未来,尽管如此,也应该保持一种从容的态度,相信未来仍有许多可能性等待着我们。 免费获取源码。 更多内容敬请期待。如有需要可…

2025年Stable Diffusion安装教程(超详细)

StableDiffusion的安装部署其实并不困难,只需简单点击几下,几分钟就能安装好,不管是windows还是苹果mac电脑,关于StableDiffusion的各种安装方式,这片文章一一来给大家讲明白。(所有安装资料都给大家整理好…

【openwrt】OpenWrt 路由器的 802.1X 动态 VLAN

参考链接 [OpenWrt Wiki] Wi-Fi /etc/config/wirelesshttps://openwrt.org/docs/guide-user/network/wifi/basic#wpa_enterprise_access_point 介绍 基于802.1X 无线网络身份验证࿰

Android12 App窗口创建流程

有关的窗口对象 PhoneWindowActivityThread#performLaunchActivity {Activity.attach}Surface new ViewRootImpl 创建null对象 mSurface.transferFrom(getOrCreateBLASTSurface())//填充内容 LayerSurfaceFlinger::createLayerSurfaceControlViewRootImpl#relayoutWindow{mSur…

Leetcode打卡:设计一个ATM机器

执行结果:通过 题目 2241 设计一个ATM机器 一个 ATM 机器,存有 5 种面值的钞票:20 ,50 ,100 ,200 和 500 美元。初始时,ATM 机是空的。用户可以用它存或者取任意数目的钱。 取款时&#xff0c…

在CodeBlocks搭建SDL2工程构建TFT彩屏模拟器虚拟TFT彩屏幕显示

在CodeBlocks搭建SDL2工程构建TFT彩屏模拟器虚拟TFT彩屏幕显示 参考文章源码下载地址一、SDL2的创建、初始化、退出二、系统基本Tick、彩屏刷新、按键事件三、彩屏获取与设置颜色四、彩屏填充颜色及清屏五、彩屏显示中文和英文字符串六、彩屏显示数字七、彩屏初始化八、主函数测…

ESP8266+STM32+阿里云保姆级教程(AT指令+MQTT)

前言:在开发过程中,几乎踩便了所有大坑小坑总结出的文章,我是把坑踩满了,帮助更过小白快速上手,如有错误之处,还麻烦各位大佬帮忙指正、 目录 一、ESP-01s介绍 1、ESP-01s管脚功能: 模组启动模…

美的空气净化器好用吗?拾梧、美的、戴森空气净化器除烟哪个好?

说到二手烟,这可真是个让人头疼的问题!它里面含有超过7000种化学物质,形式多样,处理起来比甲醛这些传统污染物难多了。在市场上那么多空气净化器里,要挑一个能真正对付二手烟的,简直就像大海捞针一样难。不…

【机器学习】穷理至极,观微知著:微积分的哲思之旅与算法之道

文章目录 微积分基础:理解变化与累积的数学前言一、多重积分的高级应用1.1 高维概率分布的期望值计算1.1.1 多维期望值的定义1.1.2 Python代码实现1.1.3 运行结果1.1.4 结果解读 1.2 特征空间的体积计算1.2.1 单位球体的体积计算1.2.2 Python代码实现1.2.3 运行结果…

Ae:合成设置 - 3D 渲染器

Ae菜单:合成/合成设置 Composition/Composition Settings 快捷键:Ctrl K After Effects “合成设置”对话框中的3D 渲染器 3D Renderer选项卡用于选择和配置合成的 3D 渲染器类型,所选渲染器决定了合成中的 3D 图层可以使用的功能&#xff0…

Zookeeper是如何解决脑裂问题的?

大家好,我是锋哥。今天分享关于【Zookeeper是如何解决脑裂问题的?】面试题。希望对大家有帮助; Zookeeper是如何解决脑裂问题的? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Zookeeper 通过一系列的机制来防止和解决脑裂(sp…

【python因果库实战15】因果生存分析4

这里写目录标题 加权标准化生存分析总结个体层面的生存曲线 加权标准化生存分析 我们还可以将加权与标准化结合起来,使用 WeightedStandardizedSurvival 模块。在这里,我们将逆倾向得分加权模型(根据基线协变量重新加权人群)与加…

windows中硬件加速gpu计划开启cpu的使用率居高不下

1.加速gpu计划开启在任务管理器的gpu选项中看不到cuda选项,这给我们进行深度学习训练和推理带来很大影响。 2.开启硬件加速CPU的占用率明显增高,特别用GPU进行实时视频流解码时就不会分配给GPU解码,造成cpu占用居高不下。不利于深度学习训练…

OpenGL入门最后一章观察矩阵(照相机)

前面的一篇文章笔者向大家介绍了模型变化矩阵,投影矩阵。现在只剩下最后一个观察矩阵没有和大家讲了。此片文章就为大家介绍OpenGL入门篇的最后一个内容。 观察矩阵 前面的篇章当中,我们看到了即使没有观察矩阵,我们也能对绘制出来的模型有一…

java.lang.Error: FFmpegKit failed to start on brand:

如果你使用FFmpegKit的时候遇到了这个问题: java.lang.Error: FFmpegKit failed to start on brand: Xiaomi, model: MI 8, device: dipper, api level: 29, abis: arm64-v8a armeabi-v7a armeabi, 32bit abis: armeabi-v7a armeabi, 64bit abis: arm64-v8a.at c…

KAGGLE竞赛实战2-捷信金融违约预测竞赛-part1-数据探索及baseline建立

竞赛链接:https://www.kaggle.com/competitions/home-credit-default-risk/ 认识数据集:application的两张表是申请人信息 通过id关联bureau:过去的借款、previous_application两张表 而bureau_balance则代表对应的还款信息 表之间的关系…

【软考网工笔记】计算机基础理论与安全——网络安全

病毒 Melissa 宏病毒 1. 是一种快速传播的能够感染那些使用MS Word 97 和MS Office 2000 的计算机宏病毒。 2. 前面有**Macro** 表示这是宏病毒; 3. 宏病毒可以感染后缀为.xls的文件;Worm 蠕虫病毒 1. 通常是通过网络或者系统漏洞进行传播。 2. 利用信…

Java虚拟机(Java Virtual Machine,JVM)

一、Java 虚拟机 Java 虚拟机(Java Virtual Machine, JVM)是运行 Java 字节码的虚拟机。它是Java平台的核心组件之一,使得Java程序具有 一次编写,到处运行(Write Once, Run Anywhere) 的特性。 JVM 有针对…

ChatGPT 主流模型GPT-4/GPT-4o mini的参数规模是多大?

微软论文又把 OpenAI 的机密泄露了??在论文中明晃晃写着: o1-preview 约 300B;o1-mini 约 100BGPT-4o 约 200B;GPT-4o-mini 约 8BClaude 3.5 Sonnet 2024-10-22 版本约 175B微软自己的 Phi-3-7B,这个不用约…

GESP202406 二级【计数】题解(AC)

》》》点我查看「视频」详解》》》 [GESP202406 二级] 计数 题目描述 小杨认为自己的幸运数是正整数 k k k(注:保证 1 ≤ k ≤ 9 1 \le k\le 9 1≤k≤9)。小杨想知道,对于从 1 1 1 到 n n n 的所有正整数中, k…