【视觉SLAM:六、视觉里程计Ⅰ:特征点法】

视觉里程计(Visual Odometry, VO)是通过处理图像序列,估计摄像头在时间上的相对位姿变化的技术。它是视觉SLAM的重要组成部分之一,主要通过提取图像中的信息(如特征点或直接像素强度)来实现相机运动估计。以下从特征点法、2D-2D对极几何、三角测量、3D-2D的PnP方法、3D-3D的ICP方法介绍视觉里程计的核心内容。

特征点法

特征点法是视觉里程计的经典方法,通过提取图像中的显著特征点,计算特征点之间的匹配关系,进而估计相机的运动。

特征点法简介

  • 原理:提取图像中显著的特征点,并通过特征点的匹配关系推断相机运动。
  • 流程:
    • 提取图像特征点。
    • 描述特征点并计算特征点匹配关系。
    • 通过特征匹配估计相机运动(后续结合几何关系)。

ORB特征

  • ORB(Oriented FAST and Rotated BRIEF)是一种高效的特征点提取和描述方法,常用于特征点法中。
    • ORB特征点提取:基于FAST角点,结合图像金字塔提取多尺度特征点。
    • ORB描述子:使用BRIEF描述子(特征点局部的二值编码)加快特征匹配。
    • 优势:ORB特征兼具高效性和鲁棒性,且能处理旋转和尺度变化。

特征匹配

  • 常用匹配算法:
    • 暴力匹配:直接计算每对特征点描述子的距离(如欧氏距离、汉明距离),效率低。
    • KNN匹配:为每个特征点找到最近的几个邻居,并通过比值测试筛选最佳匹配。
  • 关键点均匀化:通过八叉树等方法均匀分布特征点,避免密集区域的冗余。

2D-2D对极几何

在特征点匹配基础上,2D-2D对极几何用于计算相机间的相对位姿。

对极约束

  • 定义:在两幅图像中,某点 𝑝1 的匹配点 𝑝2 必定满足对极约束: p 2 ⊤ F p 1 = 0 \mathbf{p}_2^\top\mathbf{F}\mathbf{p}_1=0 p2Fp1=0
    其中 𝐹 是基础矩阵,描述两图像之间的几何关系。

本质矩阵

  • 当相机的内参已知时,基础矩阵 𝐹可转化为本质矩阵 𝐸: E = K ⊤ F K \mathbf{E}=\mathbf{K}^\top\mathbf{F}\mathbf{K} E=KFK
    其中 𝐾 是相机的内参矩阵。

单应矩阵

  • 对于静止的平面场景,匹配点间也可以通过单应矩阵 𝐻 建立关系: p 2 = H p 1 \mathbf{p}_2=\mathbf{H}\mathbf{p}_1 p2=Hp1
  • 本质矩阵 vs 单应矩阵:
    • 本质矩阵:适用于一般场景,包含视差信息。
    • 单应矩阵:适用于平面场景或无视差运动,易退化。

位姿分解

通过分解本质矩阵 𝐸,可恢复相机的相对位姿(旋转矩阵 𝑅 和平移向量 𝑡)。

三角测量

三角测量是从两帧图像中匹配的特征点,恢复3D点坐标的关键技术。

原理

  • 给定特征点在两帧图像中的投影位置 p 1 , p 2 \mathbf{p}_1,\mathbf{p}_2 p1,p2,以及相机的内参和位姿 𝑅,𝑡,通过以下方式恢复3D点: P = Triangulate ( p 1 , p 2 , R , t ) \mathbf{P}=\text{Triangulate}(\mathbf{p}_1,\mathbf{p}_2,\mathbf{R},\mathbf{t}) P=Triangulate(p1,p2,R,t)
  • 基于几何投影模型,通过线性方程或非线性优化求解3D点坐标。

验证三角化结果

  • 测量点是否位于相机前方。
  • 计算重投影误差是否足够小。

3D-2D: PnP问题

PnP(Perspective-n-Point)问题是已知3D点和对应的2D投影,求解相机位姿的问题。

直接线性变换(DLT)

  • 基于线性方程求解相机的位姿: p i = K [ R ∣ t ] P i \mathbf{p}_i=\mathbf{K}[\mathbf{R}|\mathbf{t}]\mathbf{P}_i pi=K[Rt]Pi
  • 通过线性求解,快速但精度不高。

P3P方法

  • 给定3对3D点和2D点的匹配关系,利用几何关系直接求解位姿。
  • 通常结合RANSAC算法,剔除外点,提高鲁棒性。

最小化重投影误差

通过非线性优化,最小化重投影误差以提高精度: x ∗ = arg ⁡ min ⁡ x ∑ i ∥ p i − h ( P i , x ) ∥ 2 \mathbf{x}^*=\arg\min_\mathbf{x}\sum_i\|\mathbf{p}_i-h(\mathbf{P}_i,\mathbf{x})\|^2 x=argxminipih(Pi,x)2
其中 ℎ(⋅) 是投影函数。

3D-3D: ICP方法

3D-3D配准问题是已知两组3D点云,求解它们之间的刚体变换(旋转矩阵 𝑅 和平移向量 𝑡)。

SVD方法

  • 基于点云的最近邻匹配,构造误差函数:
    E ( R , t ) = ∑ i ∥ q i − ( R p i + t ) ∥ 2 E(\mathbf{R},\mathbf{t})=\sum_i\|\mathbf{q}_i-(\mathbf{R}\mathbf{p}_i+\mathbf{t})\|^2 E(R,t)=iqi(Rpi+t)2
    其中 p i \mathbf{p}_i pi q i \mathbf{q}_i qi 是两帧中的对应3D点。
  • 使用奇异值分解(SVD)求解最优刚体变换。

非线性优化方法

  • 在初始位姿的基础上,利用非线性优化方法(如高斯-牛顿或LM算法)进一步减少误差,提高精度。
  • 优化目标:最小化点到点或点到平面的距离误差。

总结

视觉里程计通过特征点法提取信息,结合几何约束(2D-2D对极几何、三角测量)估计相机位姿,并通过PnP(3D-2D)和ICP(3D-3D)实现更复杂场景下的位姿求解。这些方法构成了视觉里程计的核心技术体系,为SLAM中的前端跟踪提供了坚实的数学基础和实现方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/502942.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端小案例——520表白信封

前言:我们在学习完了HTML和CSS之后,就会想着使用这两个东西去做一些小案例,不过又没有什么好的案例让我们去练手,本篇文章就提供里一个案例——520表白信封 ✨✨✨这里是秋刀鱼不做梦的BLOG ✨✨✨想要了解更多内容可以访问我的主…

【Vim Masterclass 笔记05】第 4 章:Vim 的帮助系统与同步练习(L14+L15+L16)

文章目录 Section 4:The Vim Help System(Vim 帮助系统)S04L14 Getting Help1 打开帮助系统2 退出帮助系统3 查看具体命令的帮助文档4 查看帮助文档中的主题5 帮助文档间的上翻、下翻6 关于 linewise7 查看光标所在术语名词的帮助文档8 关于退…

10-C语言项目池

C语言项目池 《个人通讯录》 《火车订票系统》 管理员用户1录入火车票信息区间查询/购票2显示火车票信息打印购票信息3查询火车票信息退票4修改火车票信息5添加火车票信息 《学生学籍管理系统》 1录入学生信息2添加学生信息3显示学生信息4查找学生信息5删除学生信息6修改学…

Android 绘制学习总结

1、刷新率介绍 我们先来理一下基本的概念: 1、60 fps 的意思是说,画面每秒更新 60 次 2、这 60 次更新,是要均匀更新的,不是说一会快,一会慢,那样视觉上也会觉得不流畅 3、每秒 60 次,也就是 1…

每日一题:BM1 反转链表

文章目录 [toc]问题描述数据范围示例 C代码实现使用栈实现(不符合要求,仅作为思路) 解题思路 - 原地反转链表步骤 C语言代码实现 以前只用过C刷过代码题目,现在试着用C语言刷下 问题描述 给定一个单链表的头结点 pHead&#xff…

78、使用爱芯派2_AX630C开发板 3.2T高有效算力 低功耗 支持AI-ISP真黑光实验

基本思想:使用爱心元智最新的版本开发板进行实验 AX630C、AX620Q 都是 620E 这一代 一、参考这个官方教程,先把代码在本地交叉编译完成 https://github.com/AXERA-TECH/ax620e_bsp_sdk 然后在拷贝到620c设备上 root@ax630c:~/ax620e_bsp_sdk/msp/out/arm64_glibc/bin# ./…

【Redis经典面试题七】Redis的事务机制是怎样的?

目录 一、Redis的事务机制 二、什么是Redis的Pipeline?和事务有什么区别? 三、Redis的事务和Lua之间有哪些区别? 3.1 原子性保证 3.2 交互次数 3.3 前后依赖 3.4 流程编排 四、为什么Lua脚本可以保证原子性? 五、为什么R…

企业网络性能监控

什么是网络性能监控 网络性能监控(NPM)是指对计算机网络的性能进行持续测量、分析和管理的过程,通过监控流量、延迟、数据包丢失、带宽利用率和正常运行时间等关键指标,确保网络高效、安全地运行,并将停机时间降至最低…

【开源】创建自动签到系统—QD框架

1. 介绍 QD是一个 基于 HAR 编辑器和 Tornado 服务端的 HTTP 定时任务自动执行 Web 框架。 主要通过抓包获取到HAR来制作任务模板,从而实现异步响应和发起HTTP请求 2. 需要环境 2.1 硬件需求 CPU:至少1核 内存:推荐 ≥ 1G 硬盘:推…

SUB输入5V升压充电16.8V芯片HU5912

HU5912芯片,作为航誉微电子有限公司推出的一款高性能升压充电管理IC,自其面世以来,便以其出色的性能和广泛的应用领域,受到了业界的高度关注和赞誉。本文将详细介绍HU5912芯片的技术特点、应用优势、市场定位以及其在各类电子设备…

练习(继承)

大家好,今天我们写几道题来巩固一下我们所学的知识,以便我们更好的学习新内容。 方法重写: 继承: 注:java中只能继承一个类 那么今天分享就到这里,谢谢大家!!!

计算机网络 (28)虚拟专用网VPN

前言 虚拟专用网络(VPN)是一种在公共网络上建立私有网络连接的技术,它允许远程用户通过加密通道访问内部网络资源,实现远程办公和安全通信。 一、基本概念 定义:VPN是一种通过公共网络(如互联网&#xff09…

04-spring-理-ApplicationContext的实现

实现1&#xff1a;ClassPathXmlApplicationContext 1、内部维护了 DefaultListableBeanFactory 2、通过XmlBeanDefinitionReader 读取配置文件将结果加入到 DefaultListableBeanFactory 3、没有维护 bean后置处理器 &#xff0c;可以通过在xml配置 <context:annotation-c…

STM32的LED点亮教程:使用HAL库与Proteus仿真

学习目标&#xff1a;掌握使用STM32 HAL库点亮LED灯&#xff0c;并通过Proteus进行仿真验证&#xff01; 建立HAL库标准工程 1.新建工程文件夹 新建工程文件夹建议路径尽量为中文。建立文件夹的目的为了更好分类去管理项目工程中需要的各类工程文件。 首先需要在某个位置建立工…

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测

回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测 目录 回归预测 | MATLAB实ELM-Adaboost多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 一、极限学习机&#xff08;ELM&#xff09; 极限学习机是一种单层前馈神经网络&#xff0c;具有训练速…

实现AVL树

目录 AVL树概念 AVL树结构 AVL树插入 LL型 - 右单旋 RR型 - 左单旋 LR型 - 左右双旋 RL型 - 右左双旋 插入代码实现 AVL树测试 附AVL树实现完整代码 AVL树概念 前面的博客介绍了搜索二叉树&#xff0c;二叉搜索树-CSDN博客 在某些特定的情况下&#xff0c;⼆叉搜索树…

unity学习11:地图相关的一些基础

目录 1 需要从 unity的 Asset Store 下载资源 1.1 下载资源 1.2 然后可以从 package Manager 里选择下载好的包&#xff0c;import到项目里 2 创建地形 2.1 创建地形 2.2 地形 Terrain大小 2.3 各种网格的尺寸大小 2.4 比较这个地形尺寸和创建的其他物体的大小对比 3 …

【vue】晋升路线图、蛇形进度条

一、效果图&#xff08;参考链接&#xff09; 代码实现 <template><div class"only-content"><h1 class"text-center my-3">讲师晋升路线</h1><!--时间轴线显示--><div class"time-line"><div class&qu…

VisionPro软件Image Stitch拼接算法

2D图像拼接的3种情景 1.一只相机取像位置固定&#xff0c;或者多只相机固定位置拍图&#xff0c;硬拷贝拼图&#xff0c;采用CopyRegion工具实现 2.一只或多只相机在多个位置拍照&#xff0c;相机视野互相重叠&#xff0c;基于Patmax特征定位后&#xff0c;无缝 拼图&#xff…

vue2项目报错You may need an appropriate loader to handle this file type

npm run 运行 vue2 项目时报错如下&#xff1a; error in ./node_modules/quill/formats/blockquote.jsModule parse failed: Unexpected token (3:18) You may need an appropriate loader to handle this file type, currently no loaders are configured to process this …