[离线数仓] 总结二、Hive数仓分层开发

接 [离线数仓] 总结一、数据采集

5.8 数仓开发之ODS层

ODS层的设计要点如下:

(1)ODS层的表结构设计依托于从业务系统同步过来的数据结构。

(2)ODS层要保存全部历史数据,故其压缩格式应选择压缩比率,较高的,此处选择gzip。

CompressedStorage - Apache Hive - Apache Software Foundation

 You can import text files compressed with Gzip or Bzip2 directly into a table stored as TextFile. The compression will be detected automatically and the file will be decompressed on-the-fly during query execution. 您可以直接将使用 Gzip 或 Bzip2 压缩的文本文件导入到存储为 TextFile 的表中。系统会自动检测压缩格式,并在查询执行时即时解压缩文件。

大数据场景需要海量的数据,因为数据量足够大,分析出来的结果更即准确。

(3)ODS层表名的命名规范为:ods_表名_单分区增量全量标识(inc/full)。 

全量表数据的采集是为了状态的同步;

增量数据的采集是为了行为的同步;

为了辨识增量同步的表和全量同步的表用inc和full做标记。

5.8.1 日志表

 (1)ODS 层简介

-- ODS 层 Operate Data Store
-- 存储从MySQL业务数据库和日志服务器的日志文件中采集到的数据
-- 日志数据:JSON格式
-- 业务数据:
        -- 全量:DataX,TSV格式,"fieldDelimiter": "\t",
        -- 增量:Maxwell,JSON格式
        -- 汇总数据:希望用最少得资源存储更多的数据
-- 压缩:列式存储压缩起来比较方便,因为行存不能保证一行的数据类型是一致的,不同类型的数据采用的压缩算法和效率不一样, 列式存储可以保证一列的数据类型一致,因此列式存储在压缩效率上会高一些。
        -- gzip:Hadoop默认支持,压缩率极高,压缩速率(压缩、解压缩)低
        -- lzo:Hadoop默认不支持,需要额外的jar包,压缩率高,压缩速率居中,支持切片(额外索引)
        -- snappy:Hadoop默认不支持,需要额外配置,压缩率低,压缩速率极高
        -- 压缩方式的选择:gzip,ODS层主要功能为存储,不需要计算,因此对压缩速率要求不高,反而对压缩率要求高(更少的空间存更多的数据)
                -- 数据格式尽可能保持不变
                -- 数据压缩格式尽可能保持不变(采集通道采用gzip压缩,这里也选择gzip压缩)
-- 命名规范
        -- 在数据仓库中,表其实都是放置在一起的,从逻辑上进行区分,进行分层
        -- 表从名称上区分每一层
        -- 分层标记:ods_ + 同步数据的表名 + 全量(_full)/ 增量(_inc) 标识

-- 日志表
/*
表的数据是同步的日志数据:
页面浏览日志:JSON
APP启动日志:JSON
命名:ods_log_inc
建表语句:
EXTERNAL,创建外部表,目的是在测试阶段可能会频繁修改表结构来验证问题,
如果使用内部表,删除表的时候会删除数据,因此为了避免重复上传测试数据,采用外部表,外部表在删除表的时候数据不会删除。
生产中可以使用内部表。
PARTITIONED BY:底层采用很多文件进行保存大量数据,一旦文件大数据多时会影响查询效率,可以通过建立分区的操作,提高查询效率。hive的分区表,实际是在表目录中创建不同的子目录,子目录中保存的数据减少,可以快速定位查询到需要的数据,从而提高查询效率。
分区表,存在分区字段,这个字段不是数据字段,而是用于文件目录的划分,不会存储到数据文件中。虽然分区字段只是用来区分子目录的,但是在管理表的时候会当作字段来处理,因此在插入数据到分区表的时候需要补充分区字段

create table test_part( id int) partitioned by (`dt` string);
insert into table test_part values (1, '2022-06-08');

这样写容易让人产生一个表有两个字段的错觉,可以换成下面的写法:

insert into table test_part partition (dt = '2022-06-08') values (1);

这样就指明了分区字段和数据字段。
静态分区:分区字段的值为固定值
动态分区:分区字段取决于查询结果,怎么实现?
分区字段不赋值,查询字段在最后增加一个额外的字段用于分区操作。

insert into table test_part partition (dt) select 2, '2022-06-09'

*/

-- 测试

drop table if exists test_part;
create table test_part( id int) partitioned by (`dt` string);
insert into table test_part values (1, '2022-06-08');
insert into table test_part partition (dt = '2022-06-09') values (2);
insert overwrite table test_part select * from test_part;

-- 默认情况下,hive没有开启动态分区处理(strict),需要设置为非严格模式(nonstrict)

-- set hive.exec.dynamic.partition.mode=strict;
set hive.exec.dynamic.partition.mode=nonstrict;
insert into table test_part partition (dt) select 2, '2022-06-10';

-- 严格限定查询语句中必须带分区字段的筛选条件,否则不能执行Query,因为数据量太大。
set hive.mapred.mode=strict;
-- set hive.mapred.mode=nonstrict;
-- 不带分区不能查询,Queries against partitioned tables without a partition filter are disabled for safety reasons. If you know what you are doing, please set hive.strict.checks.no.partition.filter to false and make sure that hive.mapred.mode is not set to 'strict' to proceed. Note that you may get errors or incorrect results if you make a mistake while using some of the unsafe features.
select * from test_part;
-- 带分区字段的筛选可以查询
select * from test_part where dt='2022-06-09';

-- SerDe
-- log:JSON
-- 默认情况下,Hive表无法解析JSON格式,

        建表时需要加上ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe',才能正常解析JSON
-- 如果Hive表可以解析JSON格式的数据,那么一般就称之为JSON表

(1)如果JSON属性和表的字段一致,那么可以正常解析
(2)如果JSON属性少于表的字段,那么存在的属性可以正常解析,不存在的字段设置为空null
(3)如果JSON属性多于表的字段,那么多于属性不做解析
(4)JSON属性和表的字段会进行不区分大小写的解析。

源JSON文件,格式不一致。

虽然txt文件中的文本内容与hive 表的字段没有一一对应,但是查询的时候也不会报错,能正常解析的就正常解析,解析不了的用“null”补充。

更换第3行”id“和”name“的位置之后,重新查询。

{"name": "Lily","id": 1003,"age": 32,"tel": 123}

查询结果,第3行正常解析,根据名称解析,和位置无关。

test_log.id    test_log.name    test_log.age
1001    Seven    30
1002    Lucky    NULL
1003    Lily    32
1003    Lily    32
1003    Lily    NULL
正常解析第四行,说明不区分大小写。

DROP TABLE IF EXISTS test_log;
CREATE EXTERNAL TABLE IF NOT EXISTS test_log(
id bigint,
name string,
age int
) COMMENT '日志数据'
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
LOCATION 'obs://bigdata-test1233/seven/warehouse313/gmall/test_log';
-- 建表完成之后,将编写好的json文本复制到表路径下,就可以正常查询了
select * from test_log;

(2)ODS层日志表建表语句

/*
EXTERNAL -- 外部表
LOCATION -- 指定存储位置
日志数据格式:
-- 页面浏览日志:JSON中包含有JSON
JSON表中存在JSON嵌套的情况,一般会将最外层的JSON对象的属性作为JSON表的字段
common
actions
displays
page
err
ts
-- APP启动日志:JSON 中嵌套JSON
common
start
err
ts
-- 表的字段类型应该采用特殊类型:array,map,struct
*/

(3)array:使用[] 表示数组

定义时加泛型:ids array<int>

访问时使用[] 加索引的方式访问数组元素。

select ids,ids[1] ids_1,ids[3], -- 超出索引长度,不会报错,而是用null补充array(ids[1],ids[2]) new_array, -- 可以取出数组的一部分组成新的数组array_contains(ids, 'e') is_exist -- 判断元素是否存在于数组中:array_contains(数组名,元素)
from (select `array`('a', 'b', 'c') ids) t;

select ids,
       ids[1] ids_1,
       ids[3], -- 超出索引长度,不会报错,而是用null补充
       array(ids[1],ids[2]) new_array, -- 可以取出数组的一部分组成新的数组
       array_contains(ids, 'e') is_exist -- 判断元素是否存在于数组中:array_contains(数组名,元素)

from (select `array`('a', 'b', 'c') ids) t; 

 ids    ids_1    _c2    new_array    is_exist
["a","b","c"]    b    NULL    ["b","c"]    false

(4)map:{"k":"v"}

select dat
from (select map('a','b','c','d') dat) t;dat
{"a":"b","c":"d"}
Time taken: 0.55 seconds, Fetched: 1 row(s)

-- map 定义时泛型约束,dat map<string, string>

-- map数据的访问,不能直接通过key进行操作,比如 dat.a,会报错:

select dat,
        dat.a
from ( select map('a','b','c','d') dat) t;

 SemanticException [Error 10042]: Line 2:7 . Operator is only supported on struct or list of struct types 'a'

-- map数据的访问,采用类似数组的方式,比如:

select dat,dat['a']
from ( select map('a','b','c','d') dat) t;

-- 如果key不存在,那么直接返回null

select dat,dat['a'],dat[0], -- 返回nullmap_keys(dat), --- 返回 ["a","c"]map_values(dat) -- 返回 ["b","d"]
from ( select map('a','b','c','d') dat) t;

(5)struct 

-- struct 定义时指定属性和类型:obj struct<id: int, name:string>

-- 构建结构体的函数:struct(),会将所有数据作为属性值存储,属性名用col1...coln 代替

select struct('a', 'b', 'c');
-- 返回:{"col1":"a","col2":"b","col3":"c"}

-- named_struct():参数必须是偶数

select named_struct('a', 'b', 'c', 'd');
-- 返回:{"a":"b","c":"d"}

 -- 结构体通过 . 的方式获取属性值

select obj,obj.a
from (select named_struct('a', 'b', 'c', 'd') obj) t ;

 -- map 和struct 的区别:

(1)泛型,可以根据数据的类型来选择使用map还是struct,如果数据类型要求一致,选择map,如果数据类型不一致,选择struct。

(2)struct中的属性名称是固定的,只要约束后就不能变化

(3)map中的key的数量不是固定的,可以动态改变;而结构体的属性不能变化

1)建表语句

create database gmall;

use gmall;

DROP TABLE IF EXISTS ods_log_inc;

CREATE EXTERNAL TABLE ods_log_inc

(

    `common` STRUCT<ar :STRING,

        ba :STRING,

        ch :STRING,

        is_new :STRING,

        md :STRING,

        mid :STRING,

        os :STRING,

        sid :STRING,

        uid :STRING,

        vc :STRING> COMMENT '公共信息',

    `page` STRUCT<during_time :STRING,

        item :STRING,

        item_type :STRING,

        last_page_id :STRING,

        page_id :STRING,

        from_pos_id :STRING,

        from_pos_seq :STRING,

        refer_id :STRING> COMMENT '页面信息',

    `actions` ARRAY<STRUCT<action_id:STRING,

        item:STRING,

        item_type:STRING,

        ts:BIGINT>> COMMENT '动作信息',

    `displays` ARRAY<STRUCT<display_type :STRING,

        item :STRING,

        item_type :STRING,

        `pos_seq` :STRING,

        pos_id :STRING>> COMMENT '曝光信息',

    `start` STRUCT<entry :STRING,

        first_open :BIGINT,

        loading_time :BIGINT,

        open_ad_id :BIGINT,

        open_ad_ms :BIGINT,

        open_ad_skip_ms :BIGINT> COMMENT '启动信息',

    `err` STRUCT<error_code:BIGINT,

            msg:STRING> COMMENT '错误信息',

    `ts` BIGINT  COMMENT '时间戳'

) COMMENT '活动信息表'

    PARTITIONED BY (`dt` STRING)

    ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'

LOCATION '/warehouse/gmall/ods/ods_log_inc/'

TBLPROPERTIES ('compression.codec'='org.apache.hadoop.io.compress.GzipCodec');

DROP TABLE IF EXISTS ods_log_inc;
CREATE EXTERNAL TABLE ods_log_inc
(`common` STRUCT<ar :STRING,ba :STRING,ch :STRING,is_new :STRING,md :STRING,mid :STRING,os :STRING,sid :STRING,uid :STRING,vc :STRING> COMMENT '公共信息',`page` STRUCT<during_time :STRING,item :STRING,item_type :STRING,last_page_id :STRING,page_id :STRING,from_pos_id :STRING,from_pos_seq :STRING,refer_id :STRING> COMMENT '页面信息',`actions` ARRAY<STRUCT<action_id:STRING,item:STRING,item_type:STRING,ts:BIGINT>> COMMENT '动作信息',`displays` ARRAY<STRUCT<display_type :STRING,item :STRING,item_type :STRING,`pos_seq` :STRING,pos_id :STRING>> COMMENT '曝光信息',`start` STRUCT<entry :STRING,first_open :BIGINT,loading_time :BIGINT,open_ad_id :BIGINT,open_ad_ms :BIGINT,open_ad_skip_ms :BIGINT> COMMENT '启动信息',`err` STRUCT<error_code:BIGINT,msg:STRING> COMMENT '错误信息',`ts` BIGINT  COMMENT '时间戳'
) COMMENT '活动信息表'PARTITIONED BY (`dt` STRING)ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.JsonSerDe'
LOCATION 'obs://bigdata-test1233/seven/warehouse313/gmall/ods/ods_log_inc/'
TBLPROPERTIES ('compression.codec'='org.apache.hadoop.io.compress.GzipCodec');

 2)数据装载

-- hdfs
load data inpath '/origin_data/gmall/log/topic_log/2022-06-08' into table ods_log_inc partition(dt='2022-06-08');-- obs
load data inpath 'obs://bigdata-test1233/origin_data/gmall/log/topic_log/2022-06-08/' into table ods_log_inc partition(dt='2022-06-08');

3)每日数据装载脚本

(1)在~/bin目录下创建hdfs_to_ods_log.sh

        $ vim hdfs_to_ods_log.sh  

(2)编写如下内容

#!/bin/bash# 定义变量方便修改
APP=gmall# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;thendo_date=$1
elsedo_date=`date -d "-1 day" +%F`
fiecho ================== 日志日期为 $do_date ==================
sql="
load data inpath 'obs://bigdata-test1233/origin_data/$APP/log/topic_log/$do_date' into table ${APP}.ods_log_inc partition(dt='$do_date');
"
hive -e "$sql"

 (3)增加脚本执行权限

        $ chmod +x hdfs_to_ods_log.sh

(4)脚本用法

        $ hdfs_to_ods_log.sh 2022-06-08 

5.8.2  业务表

1 活动信息表(全量表)

DROP TABLE IF EXISTS ods_activity_info_full;

CREATE EXTERNAL TABLE ods_activity_info_full

(

    `id`              STRING COMMENT '活动id',

    `activity_name` STRING COMMENT '活动名称',

    `activity_type` STRING COMMENT '活动类型',

    `activity_desc` STRING COMMENT '活动描述',

    `start_time`     STRING COMMENT '开始时间',

    `end_time`        STRING COMMENT '结束时间',

    `create_time`    STRING COMMENT '创建时间',

    `operate_time`   STRING COMMENT '修改时间'

) COMMENT '活动信息表'

    PARTITIONED BY (`dt` STRING)

    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'

    NULL DEFINED AS ''

LOCATION '/warehouse/gmall/ods/ods_activity_info_full/'

TBLPROPERTIES ('compression.codec'='org.apache.hadoop.io.compress.GzipCodec');

2 活动规则表(全量表)

DROP TABLE IF EXISTS ods_activity_rule_full;

CREATE EXTERNAL TABLE ods_activity_rule_full

(

    `id`                  STRING COMMENT '编号',

    `activity_id`       STRING COMMENT '活动ID',

    `activity_type`     STRING COMMENT '活动类型',

    `condition_amount` DECIMAL(16, 2) COMMENT '满减金额',

    `condition_num`     BIGINT COMMENT '满减件数',

    `benefit_amount`    DECIMAL(16, 2) COMMENT '优惠金额',

    `benefit_discount` DECIMAL(16, 2) COMMENT '优惠折扣',

    `benefit_level`     STRING COMMENT '优惠级别',

    `create_time`       STRING COMMENT '创建时间',

    `operate_time`      STRING COMMENT '修改时间'

) COMMENT '活动规则表'

    PARTITIONED BY (`dt` STRING)

    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'

    NULL DEFINED AS ''

LOCATION '/warehouse/gmall/ods/ods_activity_rule_full/'

TBLPROPERTIES ('compression.codec'='org.apache.hadoop.io.compress.GzipCodec');

3 一级品类表(全量表)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/504115.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3D机器视觉的类型、应用和未来趋势

3D相机正在推动机器视觉市场的增长。很多制造企业开始转向自动化3D料箱拣选&#xff0c;专注于使用3D视觉和人工智能等先进技术来简化操作并减少开支。 预计3D相机将在未来五年内推动全球机器视觉市场&#xff0c;这得益于移动机器人和机器人拣选的强劲增长。到 2028 年&#…

Mac-docker配置

1.配置的文件路径 cd ~/.docker (base) zhangyaweimacbookair .docker % ls buildx cli-plugins config.json contexts daemon.json desktop-build mutagen run (base) zhangyaweimacbookair .docker % cat daemon.json## 重启docker服务 sudo systemctl daemon-reload sudo…

SSM-SpringMVC-请求响应、REST、JSON

目录 “为什么要学 SpringMVC&#xff1f;它和 Servlet 是什么关系&#xff1f;” “什么是异步&#xff1f;为什么异步交互中常用 JSON 格式&#xff1f;异步请求和 JSON 如何配合&#xff1f;” 一、概述 SpringMVC主要负责 1 SpringMVC的常用组件 2 SpringMVC的工作流程…

【Arm】Arm 处理器的半主机(semihosting)机制

概览 通过 semihosting 机制&#xff0c;主机可以通过调试器使用目标计算机 IO 接口。 例如开发者的 PC 通过 J-Link 来使用 STM32 MCU 的输入输出。 这些功能的示例包括键盘输入、屏幕输出和硬盘 I/O。例如&#xff0c;可以使用此机制启用 C Library 中的函数&#xff0c;如…

网络安全-XSS跨站脚本攻击(基础篇)

漏洞扫描的原理 1.跨站脚本攻击介绍 xss跨站脚本攻击&#xff1a; xSS 全称&#xff08;Cross site Scripting &#xff09;跨站脚本攻击&#xff0c;是最常见的Web应用程序安全漏洞之一&#xff0c;位于OWASP top 10 2013/2017年度分别为第三名和第七名&#xff0c;XSS是指攻…

深度学习与计算机视觉 (博士)

文章目录 零、计算机视觉概述一、深度学习相关概念1.学习率η2.batchsize和epoch3.端到端(End-to-End)、序列到序列(Seq-to-Seq)4.消融实验5.学习方式6.监督学习的方式(1)有监督学习(2)强监督学习(3)弱监督学习(4)半监督学习(5)自监督学习(6)无监督学习(7)总结&#xff1a;不同…

n 维数组(张量)关于轴 axis 的理解

本文将从两个角度来理解 “轴” 的概念&#xff0c;着重阐述 1.2 节中的理解&#xff0c;并借此加深问题一和问题二的理解。 一、问题&#xff1a;如何理解 numpy 数组在轴上的 sum 操作 二、问题&#xff1a;torch 张量中的维度 dim 也是如此 一、问题&#xff1a;如何理解 n…

Vscode辅助编码AI神器continue插件

案例效果 1、安装或者更新vscode 有些版本的vscode不支持continue,最好更新到最新版,也可以直接官网下载 https://code.visualstudio.com/Download 2、安装continue插件 搜索continue,还未安装的,右下脚有个Install,点击安装即可 <

操作手册:集成钉钉审批实例消息监听配置

此文档将记录在慧集通平台怎么实现钉钉审批实例结束或发起或取消时&#xff0c;能够实时的将对应的实例数据抓取出来送入第三方系统 集成平台配置 1、配置中心库&#xff0c;存储钉钉发送的消息&#xff0c;可以忽略&#xff0c;若不配置&#xff0c;则钉钉的消息将不再记录到…

mysql -> 达梦数据迁移(mbp大小写问题兼容)

安装 注意后面初始化需要忽略大小写 初始化程序启动路径 F:\dmdbms\tool dbca.exe 创建表空间&#xff0c;用户&#xff0c;模式 管理工具启动路径 F:\dmdbms\tool manager.exe 创建表空间 创建用户 创建同名模式&#xff0c;指定模式拥有者TEST dts 工具数据迁移 mysql -&g…

MacBook Linux 树莓派raspberrypi安装Golang环境

个人还是比较喜欢用go语言开发,比java开发效率高,以后会持续更新golang相关的博客 MacBook安装golang环境 官方下载地址: https://golang.google.cn/dl/ 官方下载Mac对应版本 tar.gz包 OS macOS 版本 x86-64 #解压 tar -zxvf xxx.tar.gz #配置环境变量 vim ~/.zshrc #文件最后…

基于LabVIEW的BeamGage自动化接口应用

设置 National Instruments LabVIEW可执行程序需要被配置为使用.NET 4框架。.NET允许自定义可执行程序的运行方式。可通过以下方式实现&#xff1a; 在LabVIEW安装目录中创建一个名为LabVIEW.exe.config的文本文件&#xff08;例如&#xff1a;C:\Program Files\National Ins…

SQL概述

SQL SQL&#xff08;Structured Query Language&#xff09;是“结构化查询语言”&#xff0c;它是对关系型数据库的操作语言。它可以应用到所有关系型数据库中。如&#xff1a;MySQL、Oracle、SQL Server 等。除了 SQL 标准之外&#xff0c;大部分 SQL 数据库程序都拥有它们自…

WandB使用笔记

最近看代码&#xff0c;发现代码中有wandb有关的内容&#xff0c;搜索了一下发现是一个模型训练工具&#xff0c;然后学习了一下&#xff0c;这里记录一下使用过程&#xff0c;方便以后查阅。 WandB使用笔记 登录WandB 并 创建团队安装 WandB 并 登录模型训练过程跟踪模型版本管…

中国科技统计年鉴EXCEL版(2021-2023年)-社科数据

中国科技统计年鉴EXCEL版&#xff08;2021-2023年&#xff09;-社科数据https://download.csdn.net/download/paofuluolijiang/90028724 https://download.csdn.net/download/paofuluolijiang/90028724 中国科技统计年鉴提供了从2021至2023年的详尽数据&#xff0c;覆盖了科技…

Cursor无限续杯——解决Too many free trials.

前情提要 我们都知道Cursor对新用户是有14天且500条免费限制的。 一般情况下&#xff0c;当14天过期&#xff0c;是可以注销账户再重新注册&#xff0c;这样就可以继续拥有14天的体验时长。 但是&#xff01;&#xff01;如果使用超过500次&#xff0c;Cusor就会把你的电脑I…

深入学习RabbitMQ的Direct Exchange(直连交换机)

RabbitMQ作为一种高性能的消息中间件&#xff0c;在分布式系统中扮演着重要角色。它提供了多种消息传递模式&#xff0c;其中Direct Exchange&#xff08;直连交换机&#xff09;是最基础且常用的一种。本文将深入介绍Direct Exchange的原理、应用场景、配置方法以及实践案例&a…

Mysql--基础篇--事务(ACID特征及实现原理,事务管理模式,隔离级别,并发问题,锁机制,行级锁,表级锁,意向锁,共享锁,排他锁,死锁,MVCC)

在MySQL中&#xff0c;事务&#xff08;Transaction&#xff09;是一组SQL语句的集合&#xff0c;这些语句一起被视为一个单一的工作单元。事务具有ACID特性&#xff0c;确保数据的一致性和完整性。通过事务&#xff0c;可以保证多个操作要么全部成功执行&#xff0c;要么全部不…

Linux下文件重定向

文章目录 一 重定向的基本使用1. 标准输出重定向2. 标准错误输出重定向3. 同时重定向标准输出和标准错误输出4. 输入重定向&#xff08;<&#xff09; 二 重定向基本原理1. 文件描述符概念2.什么是文件描述符3. 文件描述符的分配规则初始分配与默认对应关系动态分配规则 4. …

Android车载音频系统目录

目录 第一章 1.1 Android Automotive&#xff08;一&#xff09; 1.2 Android Automotive&#xff08;二&#xff09; 1.3 Android Automotive&#xff08;三&#xff09; 第二章 2.1 Android车载音频系统概览 2.2 车载音频焦点 2.3 车载音频配置 2.4 Audio control HAL…