Linux——信号量和(环形队列消费者模型)

Linux——线程条件变量(同步)-CSDN博客


文章目录


目录

文章目录

前言

一、信号量是什么?

二、信号量

1、主要类型

2、操作

3、应用场景

三、信号量函数

1、sem_init 函数

2、sem_wait 函数

3、sem_post 函数

4、sem_destroy 函数

​​​​​​​5、sem_getvalue 函数

6、sem_trywait 函数

7、sem_timedwait 函数

四、环形队列

1、定义与原理

2、操作

五、线程池

基本原理

主要功能

实现方式

六、基于环形队列的消费者模型

1、main函数

2、RingQueue.hpp 

3、Task.hpp 

​编辑


前言

信号量(Semaphore)是一种用于多线程或多进程环境下实现同步和互斥的机制。


一、信号量是什么?

信号量本质上是一个计数器,用于控制对共享资源的访问。它的值表示当前可用的资源数量。当一个线程或进程想要访问某个共享资源时,它需要先检查信号量的值。如果信号量的值大于 0,则表示有可用资源,该线程或进程可以获取资源并将信号量的值减 1;如果信号量的值为 0,则表示没有可用资源,该线程或进程需要等待,直到其他线程或进程释放资源,使信号量的值大于 0。

二、信号量

1、主要类型

  • 二进制信号量:也称为互斥信号量,它的值只能是 0 或 1。主要用于实现互斥访问,确保在任何时刻只有一个线程或进程能够访问共享资源,就像一个房间只有一把钥匙,谁拿到钥匙谁才能进入房间使用里面的资源,使用完后把钥匙放回,其他人才有机会拿到钥匙进入。
  • 计数信号量:其值可以是任意非负整数,用于控制同时访问共享资源的线程或进程数量。比如有一个停车场有 10 个停车位,就可以用一个初始值为 10 的计数信号量来表示,每有一辆车进入停车场,信号量的值就减 1,当信号量的值为 0 时,表示停车场已满,后续车辆需要等待。

2、操作

  • P 操作:也称为 wait 操作或 down 操作。当一个进程或线程执行 P 操作时,它会检查信号量的值。如果信号量的值大于 0,则将信号量的值减 1,然后进程或线程可以继续执行;如果信号量的值为 0,则进程或线程会被阻塞,放入等待队列,直到信号量的值大于 0。
  • V 操作:也称为 signal 操作或 up 操作。当一个进程或线程执行 V 操作时,它会将信号量的值加 1。如果此时有其他进程或线程正在等待该信号量(即信号量的值为 0 且有进程在等待队列中),则系统会从等待队列中唤醒一个进程或线程,使其能够执行 P 操作并获取资源。

3、应用场景

  • 资源管理:可以用于管理系统中的各种资源,如内存、文件、网络连接等。通过信号量可以确保资源的合理分配和使用,避免资源冲突和过度使用。
  • 进程同步:在多个进程或线程协同工作的场景中,信号量可以用于实现进程之间的同步。例如,一个进程需要等待另一个进程完成某个任务后才能继续执行,就可以使用信号量来实现这种等待和唤醒机制。
  • 生产者 - 消费者问题:是信号量应用的经典场景。生产者进程生产数据并将其放入缓冲区,消费者进程从缓冲区中取出数据进行消费。通过信号量可以控制生产者和消费者的行为,确保缓冲区不会被过度写入或读取。

三、信号量函数

1、sem_init 函数

  • 功能:用于初始化一个信号量。
  • 原型:int sem_init(sem_t *sem, int pshared, unsigned int value);
  • 参数:sem是指向要初始化的信号量的指针;pshared指定信号量是否在进程间共享,0 表示仅在线程间共享,非 0 表示在进程间共享;value是信号量的初始值。
  • 返回值:成功时返回 0,失败时返回 - 1,并设置errno以指示错误原因。

2、sem_wait 函数

  • 功能:对信号量执行 P 操作,即等待信号量变为可用。
  • 原型:int sem_wait(sem_t *sem);
  • 参数:sem是指向要操作的信号量的指针。
  • 返回值:成功时返回 0,若信号量的值为 0,则线程会阻塞直到信号量可用;失败时返回 - 1,并设置errno

3、sem_post 函数

  • 功能:对信号量执行 V 操作,释放信号量,使信号量的值加 1。
  • 原型:int sem_post(sem_t *sem);
  • 参数:sem是指向要操作的信号量的指针。
  • 返回值:成功时返回 0,失败时返回 - 1,并设置errno

4、sem_destroy 函数

  • 功能:销毁一个信号量,释放相关资源。
  • 原型:int sem_destroy(sem_t *sem);
  • 参数:sem是指向要销毁的信号量的指针。
  • 返回值:成功时返回 0,失败时返回 - 1,并设置errno

​​​​​​​5、sem_getvalue 函数

  • 功能:获取信号量的当前值。
  • 原型:int sem_getvalue(sem_t *sem, int *sval);
  • 参数:sem是指向要查询的信号量的指针;sval是一个整数指针,用于存储信号量的当前值。​​​​​​​
  • 返回值:成功时返回 0,并将信号量的当前值存储在sval指向的位置;失败时返回 - 1,并设置errno以指示错误原因。

6、sem_trywait 函数

  • 功能:尝试对信号量执行 P 操作,但不会阻塞线程。如果信号量的值大于 0,则将信号量的值减 1 并立即返回;如果信号量的值为 0,则立即返回错误,而不会阻塞线程。
  • 原型:int sem_trywait(sem_t *sem);
  • 参数:sem是指向要操作的信号量的指针。
  • 返回值:成功时返回 0,此时表示成功获取信号量并将其值减 1;如果信号量的值为 0,无法获取信号量,则返回 - 1,并将errno设置为EAGAIN

7、sem_timedwait 函数

  • 功能:对信号量执行 P 操作,但会设置一个超时时间。如果在超时时间内信号量变为可用,则获取信号量并返回;如果超时时间已过,信号量仍不可用,则返回错误。
  • 原型:int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);
  • 参数:sem是指向要操作的信号量的指针;abs_timeout是一个指向struct timespec结构体的指针,用于指定绝对超时时间。
  • 返回值:成功时返回 0,若在超时时间内未获取到信号量,则返回 - 1,并将errno设置为ETIMEDOUT

四、环形队列

1、定义与原理

  • 环形队列是一种基于队列的数据结构,它将队列的首尾相连,形成一个环形的存储空间。与普通队列不同,环形队列可以更有效地利用存储空间,避免了普通队列在元素出队后出现的前端空闲空间无法利用的问题。
  • 它通过使用两个指针,即队头指针(front)和队尾指针(rear)来管理队列中的元素。当队尾指针到达队列的末尾时,它会重新回到队列的开头,继续存储新元素,从而实现了循环利用空间的功能。

2、操作

  • 初始化:创建一个指定大小的数组来存储队列元素,并将队头指针和队尾指针都初始化为 0,表示队列为空。
  • 入队操作:当要将一个新元素插入到环形队列中时,首先检查队列是否已满。如果未满,将新元素存储在队尾指针所指向的位置,然后将队尾指针向后移动一位。如果队尾指针已经到达数组的末尾,则将其重新设置为数组的开头位置。
  • 出队操作:从环形队列中删除元素时,首先检查队列是否为空。如果不为空,取出队头指针所指向的元素,然后将队头指针向后移动一位。同样,如果队头指针到达数组的末尾,也需要将其重新设置为数组的开头位置。
  • 判断队列空满
    • 一般采用牺牲一个存储空间的方法来区分队列空和满的情况,即当(rear + 1) % maxSize == front时,认为队列已满,其中maxSize是队列的最大容量;当front == rear时,认为队列是空的。
    • 也可以使用一个计数器来记录队列中元素的个数,当计数器的值为 0 时表示队列为空,当计数器的值等于maxSize时表示队列已满。

五、线程池

线程池是一种多线程处理形式,它将多个线程预先创建并放入一个池中,以方便对线程进行管理和重复利用,从而提高系统性能和资源利用率。以下是关于线程池的详细介绍:

基本原理

  • 线程创建与管理:线程池在初始化时会创建一定数量的线程,并将它们放入线程池中。这些线程在创建后不会立即执行具体任务,而是处于等待状态,等待接收任务并执行。
  • 任务队列:线程池通常会维护一个任务队列,用于存储待执行的任务。当有新任务到来时,会将任务添加到任务队列中。线程池中的线程会不断从任务队列中获取任务,并执行相应的操作。
  • 线程复用:线程执行完一个任务后,不会立即销毁,而是返回到线程池中,继续等待下一个任务。这样可以避免频繁地创建和销毁线程,减少了线程创建和销毁所带来的开销,提高了系统的性能和响应速度。

主要功能

  • 提高资源利用率:通过复用线程,避免了因频繁创建和销毁线程而带来的资源浪费,尤其是在处理大量短时间任务时,能显著提高系统资源的利用率。
  • 控制并发度:可以限制同时执行的线程数量,避免过多线程同时运行导致系统资源过度消耗,从而保证系统的稳定性和响应能力。
  • 简化线程管理:将线程的创建、调度和管理等工作封装在一个线程池中,使得开发者无需直接管理大量的线程,降低了多线程编程的复杂性,提高了代码的可维护性和可读性。

实现方式

  • 线程池的组成部分
    • 线程集合:存储线程池中的所有线程,一般使用线程数组或线程列表来实现。
    • 任务队列:用于存放待执行的任务,通常使用队列数据结构,如阻塞队列来实现。当任务队列满时,新任务可能会被阻塞或根据特定的策略进行处理。
    • 线程池管理模块:负责线程池的初始化、线程的创建与销毁、任务的分配与调度等管理工作。它根据任务队列的状态和线程池的配置参数,决定是否需要创建新的线程或回收空闲线程。
  • 工作流程
    • 任务提交:用户将任务提交到线程池,任务会被放入任务队列中。
    • 任务分配:线程池中的线程会不断从任务队列中获取任务。当线程获取到任务后,就开始执行任务。
    • 线程管理:线程池管理模块会监控线程的状态,当线程执行完任务后,会将其重新放回线程池中,使其可以继续执行下一个任务。如果线程池中的线程数量超过了最大线程数,或者有空闲线程超过了一定的空闲时间,线程池管理模块会负责销毁这些线程,以释放资源。

六、基于环形队列的消费者模型

1、main函数

#include <iostream>
#include <pthread.h>
#include <unistd.h>
#include <ctime>
#include "RingQueue.hpp"
#include "Task.hpp"using namespace std;struct ThreadData
{RingQueue<Task> *rq;std::string threadname;
};void *Productor(void *args)
{// sleep(3);ThreadData *td = static_cast<ThreadData*>(args);RingQueue<Task> *rq = td->rq;std::string name = td->threadname;int len = opers.size();while (true){// 1. 获取数据int data1 = rand() % 10 + 1;usleep(10);int data2 = rand() % 10;char op = opers[rand() % len];Task t(data1, data2, op);// 2. 生产数据rq->Push(t);cout << "Productor task done, task is : " << t.GetTask() << " who: " << name << endl;sleep(1);}return nullptr;
}void *Consumer(void *args)
{ThreadData *td = static_cast<ThreadData*>(args);RingQueue<Task> *rq = td->rq;std::string name = td->threadname;while (true){// 1. 消费数据Task t;rq->Pop(&t);// 2. 处理数据t();cout << "Consumer get task, task is : " << t.GetTask() << " who: " << name << " result: " << t.GetResult() << endl;// sleep(1);}return nullptr;
}int main()
{srand(time(nullptr) ^ getpid());RingQueue<Task> *rq = new RingQueue<Task>(50);pthread_t c[5], p[3];for (int i = 0; i < 1; i++){ThreadData *td = new ThreadData();td->rq = rq;td->threadname = "Productor-" + std::to_string(i);pthread_create(p + i, nullptr, Productor, td);}for (int i = 0; i < 1; i++){ThreadData *td = new ThreadData();td->rq = rq;td->threadname = "Consumer-" + std::to_string(i);pthread_create(c + i, nullptr, Consumer, td);}for (int i = 0; i < 1; i++){pthread_join(p[i], nullptr);}for (int i = 0; i < 1; i++){pthread_join(c[i], nullptr);}return 0;
}

2、RingQueue.hpp 

#pragma once
#include <iostream>
#include <vector>
#include <semaphore.h>
#include <pthread.h>const static int defaultcap = 5;template<class T>
class RingQueue{
private:void P(sem_t &sem){sem_wait(&sem);}void V(sem_t &sem){sem_post(&sem);}void Lock(pthread_mutex_t &mutex){pthread_mutex_lock(&mutex);}void Unlock(pthread_mutex_t &mutex){pthread_mutex_unlock(&mutex);}
public:RingQueue(int cap = defaultcap):ringqueue_(cap), cap_(cap), c_step_(0), p_step_(0){sem_init(&cdata_sem_, 0, 0);sem_init(&pspace_sem_, 0, cap);pthread_mutex_init(&c_mutex_, nullptr);pthread_mutex_init(&p_mutex_, nullptr);}void Push(const T &in) // 生产{P(pspace_sem_);Lock(p_mutex_); // ?ringqueue_[p_step_] = in;// 位置后移,维持环形特性p_step_++;p_step_ %= cap_;Unlock(p_mutex_); V(cdata_sem_);}void Pop(T *out)       // 消费{P(cdata_sem_);Lock(c_mutex_); // ?*out = ringqueue_[c_step_];// 位置后移,维持环形特性c_step_++;c_step_ %= cap_;Unlock(c_mutex_); V(pspace_sem_);}~RingQueue(){sem_destroy(&cdata_sem_);sem_destroy(&pspace_sem_);pthread_mutex_destroy(&c_mutex_);pthread_mutex_destroy(&p_mutex_);}
private:std::vector<T> ringqueue_;int cap_;int c_step_;       // 消费者下标int p_step_;       // 生产者下标sem_t cdata_sem_;  // 消费者关注的数据资源sem_t pspace_sem_; // 生产者关注的空间资源pthread_mutex_t c_mutex_;pthread_mutex_t p_mutex_;
};

3、Task.hpp 

#pragma once
#include <iostream>
#include <string>std::string opers="+-*/%";enum{DivZero=1,ModZero,Unknown
};class Task
{
public:Task(){}Task(int x, int y, char op) : data1_(x), data2_(y), oper_(op), result_(0), exitcode_(0){}void run(){switch (oper_){case '+':result_ = data1_ + data2_;break;case '-':result_ = data1_ - data2_;break;case '*':result_ = data1_ * data2_;break;case '/':{if(data2_ == 0) exitcode_ = DivZero;else result_ = data1_ / data2_;}break;case '%':{if(data2_ == 0) exitcode_ = ModZero;else result_ = data1_ % data2_;}            break;default:exitcode_ = Unknown;break;}}void operator ()(){run();}std::string GetResult(){std::string r = std::to_string(data1_);r += oper_;r += std::to_string(data2_);r += "=";r += std::to_string(result_);r += "[code: ";r += std::to_string(exitcode_);r += "]";return r;}std::string GetTask(){std::string r = std::to_string(data1_);r += oper_;r += std::to_string(data2_);r += "=?";return r;}~Task(){}private:int data1_;int data2_;char oper_;int result_;int exitcode_;
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/5332.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Github 2025-01-20 开源项目周报 Top15

根据Github Trendings的统计,本周(2025-01-20统计)共有15个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目10Rust项目2TypeScript项目1C++项目1Jupyter Notebook项目1Go项目1Tabby: 自托管的AI编码助手 创建周期:310 天开发语言:Rust协议类…

【分布式架构设计理论1】架构设计的演进过程

文章目录 一. 分布式架构要解决的问题二. 架构设计的演进过程1. 应用与数据一体2. 应用与数据分离3. 添加缓存&#xff1a;突破数据库&#xff08;IO&#xff09;瓶颈4. 服务器集群处理并发5. 数据库读写分离&#xff1a;释放读性能5.1. 问题分析5.2. 解决方案&#xff1a;读写…

【数据分享】1929-2024年全球站点的逐年最低气温数据(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据&#xff0c;气象指标包括气温、风速、降水、湿度等指标&#xff01;说到气象数据&#xff0c;最详细的气象数据是具体到气象监测站点的数据&#xff01; 有关气象指标的监测站点数据&#xff0c;之前我们分享过1929-2024年全球气象站点…

数据结构-ArrayList和顺序表

1.线性表 线性表是n个具有相同类型的数据元素所组成的有限序列&#xff0c;当n0时&#xff0c;线性表为一个空表。 常见的线性表&#xff1a;顺序表&#xff0c;链表&#xff0c;栈和队列... 线性表在逻辑上是线性结构&#xff0c;可以说是连续的一条直线。但是在物理结构上…

C#使用WMI获取控制面板中安装的所有程序列表

C#使用WMI获取控制面板中安装的所有程序列表 WMI 全称Windows Management Instrumentation,Windows Management Instrumentation是Windows中用于提供共同的界面和对象模式以便访问有关操作系统、设备、应用程序和服务的管理信息。如果此服务被终止&#xff0c;多数基于 Windo…

CPU狂飙900%如何分析?怎么定位?怎么溯源处理

当你的服务器CPU飙升到900%&#xff0c;系统卡顿、响应迟缓、业务受阻&#xff0c;这种令人焦虑的场景是否让你束手无策&#xff1f;别慌&#xff0c;这并不是世界末日&#xff0c;只要掌握正确的分析与定位方法&#xff0c;就能快速找到问题根源&#xff0c;并有效解决。 CPU…

第五篇 vue3 ref 与 reactive 对比

ref 若需要自动加载 .value ,那么就要在 底部 菜单 中 设置 选项 选择 vue 勾选 &#xff1a; Auto Insert: Dot Value Auto-complete Ref value with .value. 注意点&#xff1a; ref 不能写越过 value. 必须要在valeu 前面 进行定义 通过 reactive 来修改整体名称…

“大模型横扫千军”背后的大数据挖掘--浅谈MapReduce

文章目录 O 背景知识1 数据挖掘2 邦费罗尼原则3 TF.IDF4 哈希函数5 分布式文件系统 一、MapReduce基本介绍1. Map 任务2. 按键分组3. Reduce 任务4. 节点失效处理5.小测验&#xff1a;在一个大型语料库上有100个map任务和若干reduce任务&#xff1a; 二、基于MapReduce的基本运…

Linux系统的第一个进程是什么?

Linux进程的生命周期从创建开始&#xff0c;直至终止&#xff0c;贯穿了一个进程的整个存在过程。我们可以通过系统调用fork()或vfork()来创建一个新的子进程&#xff0c;这标志着一个新进程的诞生。 实际上&#xff0c;Linux系统中的所有进程都是由其父进程创建的。 既然所有…

使用tritonserver完成clip-vit-large-patch14图像特征提取模型的工程化。

1、关于clip-vit-large-patch14模型 关于openapi开源的clip-vit-large-patch14模型的特征提取&#xff0c;可以参考之前的文章&#xff1a;Elasticsearch向量检索需要的数据集以及768维向量生成这篇文章详细介绍了模型的下载地址、使用方式、测试脚本&#xff0c;可以让你一步…

人工智能之深度学习_[3] -PyTorch自动微分模块和构建线性回归模型

文章目录 自动微分模块9.1 梯度基本计算9.2 梯度下降法求最优解9.3 梯度计算注意点9.4 自动微分模块应用 10 PyTorch构建线性回归模型 自动微分模块 自动微分就是自动计算梯度值,也就是计算导数。 什么是梯度 对函数求导的值就是梯度 什么是梯度下降法 是一种求最优梯度值的方法…

logback日志自定义占位符

前言 在大型系统运维中&#xff0c;很大程度上是需要依赖日志的。在java大型web工程中&#xff0c;一般都会使用slf4jlogback这一个组合来实现日志的管理。 logback中很多现成的占位符可以可以直接使用&#xff0c;比如线程号【%t】、时间【%d】、日志等级【%p】&#xff0c;…

Qt中自定义信号与槽

在学习信号和槽的时候&#xff0c;我们知道信号一般对应的就是用户的行为&#xff0c;槽指的是接受到信号后的响应&#xff0c;在类内有许多的内置信号和槽函数&#xff0c;能够去实现一些常见的行为&#xff0c;但实际业务开发中&#xff0c;尤其是接受到信号的响应会根据具体…

Yearning开源MySQL SQL审核平台

一款MYSQL SQL语句/查询审计工具&#xff0c;为DBA与开发人员使用. 本地部署&#xff0c;注重隐私&#xff0c;简单高效的MYSQL审计平台。 它可以通过流程审批&#xff0c;实现真实线上环境sql的审核和执行&#xff0c;还可以回滚执行&#xff0c;能够确保线上SQL更新的可靠性…

【Python项目】小区监控图像拼接系统

【Python项目】小区监控图像拼接系统 技术简介&#xff1a;采用Python技术、B/S框架、MYSQL数据库等实现。 系统简介&#xff1a;小区监控拼接系统&#xff0c;就是为了能够让业主或者安保人员能够在同一时间将不同地方的图像进行拼接。这样一来&#xff0c;可以很大程度的方便…

汇编与逆向(一)-汇编工具简介

RadASM是一款著名的WIN32汇编编辑器&#xff0c;支持MASM、TASM等多种汇编编译器&#xff0c;Windows界面&#xff0c;支持语法高亮&#xff0c;自带一个资源编辑器和一个调试器。 一、汇编IDE工具&#xff1a;RadASM RadASM有内置的语言包 下载地址&#xff1a;RadASM asse…

基于STM32的智能门锁安防系统(开源)

目录 项目演示 项目概述 硬件组成&#xff1a; 功能实现 1. 开锁模式 1.1 按键密码开锁 1.2 门禁卡开锁 1.3 指纹开锁 2. 功能备注 3. 硬件模块工作流程 3.1 步进电机控制 3.2 蜂鸣器提示 3.3 OLED显示 3.4 指纹与卡片管理 项目源代码分析 1. 主程序流程 (main…

AUTOSAR OS模块详解(三) Alarm

AUTOSAR OS模块详解(三) Alarm 本文主要介绍AUTOSAR OS的Alarm&#xff0c;并对基于英飞凌Aurix TC3XX系列芯片的Vector Microsar代码和配置进行部分讲解。 文章目录 AUTOSAR OS模块详解(三) Alarm1 简介2 功能介绍2.1 触发原理2.2 工作类型2.3 Alarm启动方式2.4 Alarm配置2.5…

YOLO目标检测1

一. 参考资料 《YOLO目标检测》 by 杨建华博士 二. 背景 2.1 目标检测发展简史 2014年&#xff0c;RCNN问世&#xff0c;R-CNN的思路是先使用一个搜索算法从图像中提取出若干感兴趣区域(region of interest&#xff0c;RoI)&#xff0c;然后使用一个卷积神经网络(convolutio…

【Qt 常用控件】显示类控件——QLabel

目录 1.QLabel 1.1 textFormat 文本类型 普通文本和富文本 Markdown格式 1.2 alignment 文本对齐方式 1.3 wordWrap 自动换行 1.4 indent 文本缩进 1.5 margin 边距 1.6 buddy&#xff0c;qlabel伙伴 1.7 pixmap图片 和 scaledContents自动填充 1.QLabel 功能&#x…