DBeaver Ultimate Edtion 23 Multilingual (macOS, Linux, Windows) - 通用数据库工具,现已集成 ChatGPT

请访问原文链接:https://sysin.org/blog/dbeaver-23/,查看最新版。原创作品,转载请保留出处。

作者主页:www.sysin.org


通用数据库工具

DBeaver 是一个通用的数据库管理工具,适用于需要以专业方式处理数据的每个人。使用 DBeaver,您可以像在常规电子表格中一样处理数据,根据来自不同数据存储的记录创建分析报告,以适当的格式导出信息 (sysin)。对于高级数据库用户,DBeaver 建议使用强大的 SQL 编辑器、大量管理功能、数据和模式迁移能力、监控数据库连接会话等等。开箱即用的 DBeaver 支持 80 多个数据库。

dbeaver-on-ubuntu

支持的数据库

Relational | Analytics | Document-Oriented | Cloud | Hadoop | Key/Value | Time Series | Graph | Search engines | Embedded

  • Relational
    • MySQL
      The most popular open-source relational database. Now supported by Oracle.
    • MariaDB
      Fork of MySQL, bundled on many Linux systems as default MySQL engine
    • PostgreSQL
      The most powerful open-source relational database.
    • Microsoft SQL Server
      Enterprise-level relational database developed by Microsoft.
    • Oracle
      Oracle database (Express or Enterprise) is one of the most advanced relational databases.
    • DB2
      Enterprise-level relational database developed by IBM (sysin). Supported drivers are: DB2 for LUW (Linux/Unix/Windows), DB2 for z/OS, DB2 for iSeries / AS400
    • SAP® MaxDB®
      DBeaver is designed for use with SAP® MaxDB®
    • Informix
      Secure embeddable database, developed by IBM. Optimized for OLTP and IoT
    • Sybase®/SAP® ASE
      DBeaver is designed for use with SAP® ASE (Adaptive Server Enterprise), originally known as Sybase SQL Server, and also commonly known as Sybase DB or ASE, – a relational model database server product for businesses
    • Mimer SQL
      Scalable and embedded database solutions conforming to ISO standards and suited for open environments
    • InterSystems Caché
      Multipurpose relational and object-oriented DBMS
    • Firebird
      Open source cross platform SQL relational database
    • Ingres
      Open-source SQL relational database management system intended to support large commercial and government applications
    • Yellowbrick
      Unveils Integrated Data Warehouse Platform
    • Linter
      DBMS developed by the Russian company RELEX, certified by the Russian FSTEC and Ministry of Defense and providing solid security of information
    • Yugabyte DB SQL
      Distributed SQL database for global, internet-scale applications with low query latency, extreme resilience against failures.
    • Virtuoso
      Hybrid database engine that combines the functionality of a traditional RDBMS, object-relational database (ORDBMS), virtual database, RDF and XML database
    • CUBRID
      Open source SQL-based relational database management system with object extensions
  • Analytics
    • Greenplum
      Massively parallel processing database based on PostgreSQL.
    • Exasol
      Enterprise-level in-memory analytics database
    • Vertica
      Relational analytics database widely used in BigData applications
    • Teradata
      Enterprise-level analytics database
    • SAP® HANA®
      DBeaver is designed for use with SAP HANA®.
    • Netezza
      IBM data warehouse analytics database
    • PrestoDB
      Distributed SQL Query Engine for Big Data
    • ClickHouse
      Open-source distributed column-oriented DBMS
  • Document-oriented
    • MongoDB
      Free and open-source cross-platform document-oriented database
    • Couchbase
      Couchbase is an open-source, distributed multi-model NoSQL document-oriented database software that is optimized for interactive applications.
  • Cloud
    • AWS Athena
      Interactive query service that makes it easy to analyze data in Amazon S3, using standard SQL
    • AWS Redshift
      Fully managed, petabyte-scale data warehouse service in the cloud
    • AWS DynamoDB
      Key-value and document database that can handle more than 10 trillion requests per day and can support peaks of more than 20 million requests per second.
    • AWS Aurora
      MySQL and PostgreSQL-compatible relational database built for the cloud.
    • AWS DocumentDB
      Fast, scalable, highly available, and fully managed document database service that supports MongoDB workloads.
    • AWS Keyspaces
      A scalable, highly available, and managed Apache Cassandra–compatible database service.
    • Google Bigtable
      A petabyte-scale, fully managed NoSQL database service for large analytical and operational workloads.
    • Google BigQuery
      Google’s serverless, highly scalable, enterprise data warehouse designed to make all your data analysts productive at an unmatched price-performance.
    • SQL Azure
      Managed cloud database (SaaS) provided as part of Microsoft Azure.
    • Snowflake
      Cloud data warehouse
    • NuoDB
      Elastic SQL cloud database
  • Big Data / Hadoop
    • Apache Hive
      Data warehouse software that facilitates reading, writing, and managing large datasets residing in distributed storage using SQL
    • Spark Hive
      Spark JDBC driver for Apache Hive
    • Apache Drill
      Open-source version of Google’s Dremel system that is available as an infrastructure service called Google BigQuery
    • Apache Phoenix
      Apache Phoenix HBase database
    • Apache Impala
      Open source massively parallel processing (MPP) SQL query engine for data stored in a computer cluster running Apache Hadoop. Impala has been described as the open-source equivalent of Google F1
    • Gemfire XD
      Memory-optimized, distributed data store designed for applications that have demanding scalability and availability requirements
    • CockroachDB
      The SQL database for building global, scalable cloud services that survive disasters.
    • SnappyData
      In-memory data platform for mixed workload applications. Built on Apache Spark
  • Key Value
    • Apache Cassandra
      A free and open-source, distributed, wide column store, NoSQL database management system designed to handle large amounts of data across many commodity servers, providing high availability with no single point of failure
    • Redis
      An open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker.
    • Yugabyte DB CQL
  • Time Series
    • TimescaleDB
      Open-source time-series database
    • InfluxDB
      The platform for time-series data
  • Graph
    • Neo4j
      Graph database management system
    • OrientDB
      Distributed Multi-Model and Graph Database
  • Search engines
    • Elasticsearch
      Distributed, RESTful search and analytics engine. It provides a distributed, multitenant-capable full-text search engine with an HTTP web interface and schema-free JSON documents.
    • Solr
      Open source enterprise search platform. Its major features include full-text search, hit highlighting, faceted search, real-time indexing, dynamic clustering, database integration, NoSQL features and rich document (e.g., Word, PDF) handling.
  • Embedded
    • SQLite
      Popular embedded database widely used in desktop and mobile (Android) applications
    • HSQLDB
      Embedded database, written on Java and used as database engine in Open Office products.
    • H2
      Embedded database, written on Java. Supports standalone server mode.
    • Apache Derby / Java DB
      Embedded database, written on Java. Supports standalone server mode.
    • Microsoft Access
      JDBC driver for embedded Microsoft Access database (mdb)
    • CSV
      JDBC driver for flat CSV (comma separated) files
    • DBF
      The .dbf file extension represents the dBase database file

版本比较

dbeaver-version-compare

DBeaver Community 免费下载

DBeaver 23.0 新增功能

DBeaver 23.0

March 13 2023

  • Database drivers:
    • A new ODBC driver was added
  • ChatGPT:
    • OpenAI (ChatGPT) integration was implemented out-of-the-box in PRO versions
  • Cloud Explorer:
    • Azure Cloud support was added
    • PostgreSQL and MySQL support was added in Azure Cloud
  • Accessibility:
    • The text reader for the entity editor was improved
    • The text reader for the data grid was improved
    • Font settings are now respected in all editors/popups
    • Many new keyboard shortcuts were added
    • The catalog/schema selector now supports keyboard-only mode
    • Reader texts were localized
  • Data Editor:
    • A few elements and behavior in Data Editor were redesigned
    • The issues with filtering and ordering data were fixed
    • The context menu was improved
  • SQL Editor:
    • Query generation from human language text was added
    • Query execution plain was improved
    • Auto-completion issues were fixed
  • Data transfer:
    • Data export to Google Sheets and Google Drive was added
    • Data export in SQL INSERT format now supports custom target table name configuration
  • Databases:
    • PostgreSQL: The ability to create a full backup and SSL keys automatic conversion was added
    • SQL Server: VARCHAR(MAX) data type support and table column comments support were added
    • MongoDB: issues with running db.runCommand, JSON view and boolean values display were fixed
    • Teradata: mutiple issues were resolved including secure zones support and kerberos authentication
    • Snowflake: Schema Compare and Table constraints reading issues were fixed
    • Redshift: The issue with access to Redshift Datashare was resolved

下载地址

MacOS DMG – just run it and drag-n-drop DBeaver into Applications.
Debian package – run sudo dpkg -i dbeaver-<version>.deb. Then execute “dbeaver &”.
RPM package – run sudo rpm -ivh dbeaver-<version>.rpm. Then execute “dbeaver &”. Note: to upgrade use “-Uvh” parameter.
ZIP archive – extract archive and run “dbeaver” executable. Do not extract archive over previous version (remove previous version before install).
Windows installer – run installer executable. It will automatically upgrade version (if needed).

DBeaver Ultimate Edtion 23.0 Multilingual (macOS, Linux, Windows), 13th March 2023
百度网盘链接:https://sysin.org/blog/dbeaver-23/

for macOS:DBeaver Ultimate Edtion 23 for macOS Intel x64 & Apple ARM64 (sysin)

for Linux:DBeaver Ultimate Edtion 23 for Linux deb (sysin)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/63146.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

chatgpt赋能python:Python如何实现将数据结果导出

Python如何实现将数据结果导出 在Python编程中&#xff0c;我们经常需要将代码运行的结果导出保存在文件中&#xff0c;或在其他程序中使用。下面我们将介绍Python中几种将数据结果导出的方法。 方法一&#xff1a;使用文件输出 使用Python内置的open方法来打印输出的结果到…

chatgpt赋能python:Python如何生成表格——探索多种方法

Python如何生成表格——探索多种方法 表格是我们在日常生活中经常需要使用的一种数据展示形式&#xff0c;无论是在学术报告、商业汇报或者个人记录中&#xff0c;都十分实用。Python作为一门高效、简洁和易用的编程语言&#xff0c;也具有生成表格的能力。本文将探索Python生…

ThinkPHP 6 模板导出Excel

PhpOffice\PhpSpreadsheet安装和基本的导入导出本文不在介绍&#xff0c;主要用来实现用设定好样式的模板&#xff0c;填充数据&#xff0c;导出Excel文件功能。 相关文章&#xff1a; 《ThinkPHP6 excel 导入功能完整实现》 《ThinkPHP6 excel 导出功能完整实现》 《ThinkP…

朋友圈引流裂变玩法,利用朋友圈裂变引流技巧

目前在流量被各个平台分散、稀释的情况下&#xff0c;如何获取流量&#xff0c;获取精准流量无疑是不少网络从业者谈论不绝的一个话题&#xff0c;获取流量有方法吗?有!博客分享了不下百个小众可能偏时效性的引流方式方法或者一些精彩的案例剖析&#xff0c;其核心也就那么几个…

微信朋友圈信息流的系统设计

引言 信息推流&#xff08;以下简称“Feed流”&#xff09;这种功能在我们手机APP中几乎无处不在&#xff08;尤其是社交/社群产品中&#xff09;&#xff0c;最常用的就是微信朋友圈、新浪微博等。 对Feed流的定义&#xff0c;可以简单理解为只要大拇指不停地往下划手机屏幕&…

微信群如何裂变怎么让微信群裂变拉人

当我们的微信群逐渐成为一个健康群的时候&#xff0c;这个健康指的是群友都能遵守群规&#xff0c;在群里都能有所收获&#xff0c;大家共同一致来维护这个群。这时候&#xff0c;群友们对群主已经建立一定的信任基础了&#xff0c;我们就可以实行裂变推广计划了。 按现在微信官…

迅速微信社交裂变,朋友圈吸粉你也能做到!

通过微信来进行信息的裂变&#xff0c;是微信营销中最主要的一个优势以及特点。生活中&#xff0c;我们经常能发现朋友圈中有很多转发领取奖品等相关朋友圈。大家明知道这些奖励其实并不值钱也并不丰富&#xff0c;但是却还是抱着不要白不要的心理去进行转发&#xff0c;这也就…

试用了8款微信群裂变营销工具!这里给你推荐1款!

因为公司最近需要做裂变&#xff0c;所以提前开始调研&#xff0c;试用了市面上主流的微信群裂变工具。 这里主要给大家推荐我试用中&#xff0c;综合评分高的这款微信群裂变工具。 社群裂变&#xff0c;用最简单的话来说&#xff0c;就是用户通过某张海报→入群→群提示语发…

微信朋友圈设计原理

转自&#xff1a;http://www.woshipm.com/pd/2701264.html 当你一秒钟拍了张自拍&#xff0c;一个小时修了下图&#xff0c;然后打开朋友圈&#xff0c;点击发送的那一刻&#xff0c;后台到底有多少工作在进行着&#xff1f; 我们太习以为常&#xff0c;没有意识到这背后还会…

揭秘分析:朋友圈集赞引流套路,老用户是如何带来裂变效果?

微信总裁张小龙在"2021年微信公开课PRO"演讲中表示&#xff1a;每天都有10.9亿用户打开微信。3.3亿用户进行视频通话&#xff0c;7.8亿用户进入朋友圈&#xff0c;1.2亿用户发表朋友圈。微信的用户如此庞大&#xff0c;朋友圈又是最大的流量洼池&#xff0c;企业商家…

仿微信朋友圈项目梳理

项目功能简介&#xff1a; 用户通过手机号验证码进行登录和注册 可以浏览动态列表中的所有动态 登录成功后用户可以发表自己的动态 也可以对自己认可欣赏的动态进行点赞和评论 也可以通过动态结识志同道合的朋友 进行聊天和探讨 前端&#xff1a;采用Vue框架搭建 weui进行页面…

如何实现朋友圈快速裂变 ?

相信大家都有过帮朋友砍一刀的经验&#xff0c;无论是实物商品、还是火车票、好友助力&#xff0c;都可以通过砍价来实现裂变传播&#xff0c;那么对于商家来说&#xff0c;怎样才能用好砍价这个功能呢&#xff1f;不妨一起来了解下砍价营销玩法吧&#xff01; 什么是砍价? …

一场分销裂变活动,不止是发发朋友圈这么简单

现在&#xff0c;无论是大平台&#xff0c;还是小公司&#xff0c;都在做分销裂变&#xff0c;很多商家通过分销活动&#xff0c;收获了流量红利&#xff0c;实现了获客、裂变、复购。但也有很大一部分商家&#xff0c;尽管也在做分销&#xff0c;但却没有在分销活动中取得预期…

2021超级热门引流红包裂变微信分享朋友圈广告游戏源码

维信超级引流红包裂变游戏源码 维信超级引流红包裂变游戏源码&#xff0c;H5 拆红包源码 强制分享朋友圈&#xff0c;可以强制分享两次朋友圈、三个群&#xff0c;分享成功后自动跳转到你的广告页面&#xff0c;访客点击返回跳转广告页面&#xff0c;可以强制分享两次朋友圈&a…

朋友圈裂变营销活动怎么做?有什么玩法?裂变海报?积分

要问目前**运营圈里最火爆的涨粉途径是什么&#xff0c;【裂变海报】绝对当属第一。**甚至可以说是运营人必备的涨粉必杀技。 如果你对裂变海报的功能还不太清楚&#xff0c;接下来的内容就一定不要错过了&#xff0c;小金会从功能介绍到需要用到的工具&#xff0c;给大家进行详…

微信营销七(微信朋友圈发文技巧)

我们的发文可以是软文&#xff0c;也可以是硬广。但是不管怎么说&#xff0c;我们在发文的时候要注意一些问题。1. 要注意软度 什么是软度&#xff1f;那就是你的文章&#xff0c;或者是广告&#xff0c;不能太生硬了。我们在发文的时候尽量发一些软文&#xff0c;比如说我们有…

6个顶级动态数据可视化工具

作为一名数据分析师&#xff0c;一提到动态数据可视化就会感到莫名兴奋&#xff0c;我认为数据可视化有两个非常重要的部分&#xff1a;一个是动态&#xff0c;一个是数据可视化。要使数据分析真正有价值和有洞察力&#xff0c;就需要高质量的动态可视化工具。市场上有很多产品…

【1】数据可视化:基于 Echarts + Python 实现的动态实时大屏 - 互联网企业数据

目录 精彩案例汇总 效果展示 1、首先看动态效果图 2、再看实时分片数据图 一、 确定需求方案 1、确定产品上线部署的屏幕LED分辨率 2、功能模块 3、部署方式 二、整体架构设计 三、编码实现 &#xff08;基于篇幅及可读性考虑&#xff0c;此处展示部分关键代码&…

【qstock量化】动态交互数据可视化

qstock简介 qstock由“Python金融量化”开发&#xff0c;试图打造成个人量化投研分析开源库&#xff0c;目前包括数据获取&#xff08;data&#xff09;、可视化(plot)、选股(stock)和量化回测&#xff08;backtest&#xff09;四个模块。其中数据模块&#xff08;data&#xf…

新一代开源数据可视化开放平台,是如何做实时大屏/报表的?

先看两张简单配置的习作 datart 实时大屏——决策驾驶舱 datart——生产大屏 上面是在国产开源的数据可视化 datart 上简单配置的两个实时大屏&#xff0c;截图展现不出来交互的效果&#xff0c;下面传一段视频&#xff1a; 生产大屏页面 下面是安利时间 数据可视化 datart&a…