刷题总结 回溯算法

为了方便复习并且在把算法忘掉的时候能尽量快速的捡起来

刷完回溯算法这里需要做个总结

回溯算法的适用范围

回溯算法是深度优先搜索(DFS)的一种特定应用,在DFS的基础上引入了约束检查回退机制

相比于普通的DFS,回溯法的优势主要体现在解决需要约束条件判断、剪枝回退的复杂问题上。

实际应用时有易于识别的题目类型特征组合、分割、子集、排列、棋盘

这些问题的共同点是解空间均为层次结构,因此回溯算法就是对回溯树进行DFS

模式识别

根据自己刷题的感受,并统计做题过程中思路上遇到过的槛,

归纳后可以得到以下模式识别树,

专门用于看到题目后进行模式识别,

快速找到解题方法:

该模式识别树综合搜索集类型、搜索规则和结果收集条件等因素

接下来对当前的模式识别树进行简单解释:

回溯算法总模板:

def backtracking(self, 参数):if 终止条件存放结果returnfor 选择:本层集合中元素(树中节点孩子的数量就是集合的大小):处理节点self.backtracking(路径,选择列表) // 递归回溯,撤销处理结果

步骤:1.函数(无返回值,参数多) + 2.if(终止){收集+return} + 3.for(搜索集){处理;递归;回溯}

回溯树:

一、题目类型

回溯算法常用于解决问题:组合、分割、子集、排列、棋盘等

在我眼里以上题目类型可以总结为三个大类:组合类问题、排列类问题和约束满足类问题,

因此,这几个大类是根据解空间(回溯树)的层次结构进行划分的,

而且对模板的应用有较大的影响

1.组合类问题:层内层间顺序访问

包含类型:组合、分割、子集

模板变体:

def backtracking(self, 输入参数, start_idx, path, ans):if 终止条件存放结果returnfor i in range(start_idx, len(总搜索集)):if 约束条件:continue # 有时需要break处理节点self.backtracking(输入参数, start_idx + 1, path, ans) // 递归回溯,撤销处理结果

def backtracking(self, 输入参数, start_idx, path, ans):if 终止条件存放结果returnfor i in range(start_idx, len(总搜索集)):if 约束条件:处理节点self.backtracking(输入参数, start_idx + 1, path, ans) // 递归回溯,撤销处理结果

模式识别特征:

  • 不考虑顺序

  • 一般搜索集长度大于结果长度

  • 回溯树层内层间顺序访问

题目列表:

组合

77. 组合

216. 组合总和 III

39. 组合总和

40. 组合总和 II

分割

131. 分割回文串

93. 复原 IP 地址

子集

78. 子集

90. 子集 II

491. 非递减子序列

这其中有一个特例就是重复选取题:39. 组合总和

递归命令需要改为:

# self.backtracking(输入参数, start_idx + 1, path, ans) // 递归
self.backtracking(输入参数, start_idx, path, ans) // 递归

2.排列类问题:层内遍历访问层间顺序访问

包含类型:排列

模板变体:

该类型题目有visited数组写法、集合写法和交换元素三种写法,

visited数组普适性较强,以visited数组写法为例:

def backtracking(self, 输入参数, visited, path, ans):if 终止条件存放结果returnfor i in range(len(总搜索集)):if visited[i] or 其他约束条件:continue处理节点visited[i] = Trueself.backtracking(输入参数, visited, path, ans) // 递归visited[i] = False其他回溯,撤销处理结果

模式识别特征:

  • 考虑顺序

  • 搜索集长度等于结果长度

  • 回溯树层内遍历,层间顺序访问

题目列表:

46. 全排列

47. 全排列 II

3.约束满足问题:约束条件较强,无特定访问顺序

包含类型:安排行程、棋盘

相比于总模板无特定要求,但常需要主函数预处理搜索集以剪枝回溯树,实现高效搜索

模式识别特征:

  • 一般类似于排列问题

  • 有较强的约束条件

  • 一般需要对搜索集预处理,否则会超时或代码过于复杂

题目列表:

332. 重新安排行程

棋盘

51. N 皇后

37. 解数独

二、几个需要注意的题目类型的约束条件

这个只有一个维度,目前共遇到三个种类:

1.组合:结果收集条件和剪枝优化

1.1 长度

用长度作为结果收集条件会产生两个结果:

(1)路径长度符合条件时收集结果并返回

(2)剪枝优化:搜索集末尾剪枝

可以通过控制单个节点内下一步访问的搜索集的末尾位置

实现方式未

回溯树的末端指针从n调整到n - (k - len(path)) + 1

题目:

77. 组合

理解起来就是把末尾的(k - len(path))个路径去掉,

以长度作为结果收集条件的题目总搜索集长度 > 路径长度 + 节点内搜索集宽度

节点内搜索集宽度太大了,路径长度就达不到要求,

所以需要把回溯树的宽度从n调整到n - (k - len(path)) + 1,

末尾的+1是本轮访问的节点

1.2 求和值大小

类似于长度,也是有两个影响:

(1)路径求和等于目标数时收集结果并返回,大于目标数直接返回

(2)剪枝优化:排序break剪枝,

将搜索集排序,求和大于目标数舍弃节点所有后续路径

题目:

216. 组合总和 III

39. 组合总和

40. 组合总和 II

实现方式为:

如果下一层的sum(就是本层的 sum + candidates[i])已经大于target,就可以结束本轮for循环的遍历

注意主函数种要对总搜索集排序

2.分割:分割片段的约束条件

分割类题目对分割片段有特殊的要求,因此常采用以下模板范式:

def is_valid(self, 参数):判断条件def backtracking(self, 输入参数, start_idx, path, ans):if 终止条件存放结果returnfor i in range(start_idx, len(总搜索集)):if self.is_valid(参数):处理节点self.backtracking(输入参数, start_idx + 1, path, ans) // 递归回溯,撤销处理结果

题目:

131. 分割回文串

93. 复原 IP 地址

3.其他特殊约束条件:棋盘、安排行程等

该类题,常常需要复杂的判断条件或在主函数中对搜索集预处理(常用哈希表)来辅助判断约束条件

其中复杂的判断条件可能导致超时,

在主函数中对搜索集预处理(常用哈希表)来辅助判断比较常用

题目:(预处理方式)

安排行程:map哈希表:

332. 重新安排行程

棋盘:数组哈希表:

51. N 皇后

37. 解数独

三、去重

1.组合问题中的去重

如果搜索集存在重复元素,则需要进行同层重复剪枝操作来去重,

否则由于回溯树中同一层存在重复元素,使得多条路径通向同一个结果

导致重复的组合结果,

去重方法可以分为索引去重数值去重,但都需要排序

其中排序有两个作用:使相同数字紧贴防止异层重复访问

防止异层重复访问是去重能够在层内进行的前提,

索引去重便是利用相同数字紧贴的特性去重,有简单写法数组写法两种写法

数值去重则是在层内统计同一个数值的使用情况来去重,不需要排序的第一个功能,

更详细介绍在刷题记录 回溯算法-13:90. 子集 II-CSDN博客

题目:

40. 组合总和 II

90. 子集 II

491. 非递减子序列

其中491. 非递减子序列情况特殊,只能用数值去重,详见刷题记录 回溯算法-14:491. 非递减子序列-CSDN博客

2.排列问题中的去重

和组合问题略有不同,排列问题除了层内去重还可以倒序去重,

层内去重逻辑和组合去重类似,索引去重数值去重都可以用,同样需要排序

但索引去重的简单写法无法使用,只能用数组写法

倒序去重很少用,以上详见:

刷题记录 回溯算法-16:47. 全排列 II-CSDN博客

题目:47. 全排列 II

四、遍历与搜索(递归函数返回)

大部分题目需要找到所有结果,但有些题目找到一个结果即可返回,其代码结构会出现一些变化

1.收集所有结果

大部分题目都需要用一个数组收集所有符合条件的结果,

这也是总模板适配的情况

def backtracking(self, 参数):if 终止条件存放结果returnfor 选择:本层集合中元素(树中节点孩子的数量就是集合的大小):处理节点self.backtracking(路径,选择列表) // 递归回溯,撤销处理结果

2.找到一个结果

有些题目只需要找到一个结果即可,且往往尝试找到所有结果会导致超时,

这种情况需要用返回值在找到结果后快速返回主函数:

def backtracking(self, 参数):if 终止条件存放结果return Truefor 选择:本层集合中元素(树中节点孩子的数量就是集合的大小):处理节点if self.backtracking(路径,选择列表):  # 递归return True回溯,撤销处理结果return False

修改分为三处:

1.终止条件返回True

2.递归调用返回True

3.函数末尾返回False 

题目:

332. 重新安排行程

37. 解数独

建议的复习方法

回溯算法类型的题目有较为统一的模板和容易识别的题目类型,

但各个类型都会有格子需要注意的点,

因此建议先简单过一遍模式识别树,熟悉模板和思路

然后按题目类型顺序逐个类型过一遍算法题,强化各个类型的特定模式

当遇到不熟悉的模式识别环节,就做一下特定模式识别环节的强化练习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/7136.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】我在广州学Mysql 系列——MySQL用户管理详解

ℹ️大家好,我是练小杰,本博客是春节前最后一篇了,在此感谢大佬们今年的支持!!🙏🙏 接下来将学习MYSQL用户管理的相关概念以及命令~~ 回顾:👉【MYSQL触发器的使用】 数据…

网络编程-网络原理HTTP1

文章目录 HTTP请求/响应的基本结构认识URLURL是什么和基本格式关于encoding机制 认识方法(method)GET方法简介GET方法的特点POST方法简介POST方法的特点GET和POST的区别(经典面试题)关于GET和POST的补充说明Restful风格 上节主要是对http协议的一些最基本的概念做出一些说明, 然…

概率密度函数(PDF)分布函数(CDF)——直方图累积直方图——直方图规定化的数学基础

对于连续型随机变量,分布函数(Cumulative Distribution Function, CDF)是概率密度函数(Probability Density Function, PDF)的变上限积分,概率密度函数是分布函数的导函数。 如果我们有一个连续型随机变量…

[Python学习日记-79] socket 开发中的粘包现象(解决模拟 SSH 远程执行命令代码中的粘包问题)

[Python学习日记-79] socket 开发中的粘包现象(解决模拟 SSH 远程执行命令代码中的粘包问题) 简介 粘包问题底层原理分析 粘包问题的解决 简介 在Python学习日记-78我们留下了两个问题,一个是服务器端 send() 中使用加号的问题&#xff0c…

【落羽的落羽 数据结构篇】算法复杂度

文章目录 一、数据结构和算法简介二、算法复杂度1. 时间复杂度2. 空间复杂度 一、数据结构和算法简介 数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。没有一种单一的数据结构对所有用途都有用,所以我们要学…

22_解析XML配置文件_List列表

解析XML文件 需要先 1.【加载XML文件】 而 【加载XML】文件有两种方式 【第一种 —— 使用Unity资源系统加载文件】 TextAsset xml Resources.Load<TextAsset>(filePath); XmlDocument doc new XmlDocument(); doc.LoadXml(xml.text); 【第二种 —— 在C#文件IO…

第十五届蓝桥杯大赛软件赛省赛C/C++ 大学 B 组

第十五届的题目在规定时间内做出了前5道&#xff0c;还有2道找时间再磨一磨。现在把做的一些思路总结如下&#xff1a; 题1&#xff1a;握手问题 问题描述 小蓝组织了一场算法交流会议&#xff0c;总共有 50人参加了本次会议。在会议上&#xff0c;大家进行了握手交流。按照惯例…

联想电脑怎么设置u盘启动_联想电脑设置u盘启动方法(支持新旧机型)

有很多网友问联想电脑怎么设置u盘启动&#xff0c;联想电脑设置u盘启动的方法有两种&#xff0c;一是通过bios进行设置。二是通过快捷方式启动进入u盘启动。但需要注意有两种引导模式是&#xff0c;一种是uefi引导&#xff0c;一种是传统的leacy引导&#xff0c;所以需要注意制…

GitHub Actions 使用需谨慎:深度剖析其痛点与替代方案

在持续集成与持续部署&#xff08;CI/CD&#xff09;领域&#xff0c;GitHub Actions 曾是众多开发者的热门选择&#xff0c;但如今&#xff0c;其弊端逐渐显现&#xff0c;让不少人在使用前不得不深思熟虑。 团队由大约 15 名工程师组成&#xff0c;采用基于主干的开发方式&am…

Leetcode-两数相加

给你两个 非空 的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的&#xff0c;并且每个节点只能存储 一位 数字。 请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外&#xff0c;这两个数都不会以 0 …

MySQL安装教程

一、下载 点开下面的链接&#xff1a;下载地址 点击Download 就可以下载对应的安装包了, 安装包如下: 二、解压 下载完成后我们得到的是一个压缩包&#xff0c;将其解压&#xff0c;我们就可以得到MySQL 8.0.34 的软件本体了(就是一个文件夹)&#xff0c;我们可以把它放在你想…

BGP分解实验·11——路由聚合与条件性通告(3)

续接上&#xff08;2&#xff09;的实验。其拓扑如下&#xff1a; 路由聚合的负向也就是拆分&#xff0c;在有双出口的情况下&#xff0c;在多出口做流量分担是优选方法之一。 BGP可以根据指定来源而聚合路由&#xff0c;在产生该聚合路由的范围内的条目注入到本地BGP表后再向…

INCOSE需求编写指南-第1部分:介绍

第1部分&#xff1a;介绍Section 1: Introduction 1.1 目的和范围 Purpose and Scope 本指南专门介绍如何在系统工程背景下以文本形式表达需求和要求陈述。其目的是将现有标准&#xff08;如 ISO/IEC/IEEE 29148&#xff09;中的建议以及作者、主要贡献者和审稿员的最佳实践结…

基于神经网络的视频编码NNVC(1):帧内预测

在H.266/VVC发布后&#xff0c;基于传统编码框架提升压缩率越来越难&#xff0c;随着深度学习的发展&#xff0c;研究人员开始尝试将神经网络引入编码器。为此&#xff0c;JVET工作组在2020年成立AHG11小组来专门进行基于神经网络的视频编码的研究。 为了方便研究&#xff0c;工…

深入探究分布式日志系统 Graylog:架构、部署与优化

文章目录 一、Graylog简介二、Graylog原理架构三、日志系统对比四、Graylog部署传统部署MongoDB部署OS或者ES部署Garylog部署容器化部署 五、配置详情六、优化网络和 REST APIMongoDB 七、升级八、监控九、常见问题及处理 一、Graylog简介 Graylog是一个简单易用、功能较全面的…

寒假1.23

题解 web&#xff1a;[极客大挑战 2019]Secret File&#xff08;文件包含漏洞&#xff09; 打开链接是一个普通的文字界面 查看一下源代码 发现一个链接&#xff0c;点进去看看 再点一次看看&#xff0c;没什么用 仔细看&#xff0c;有一个问题&#xff0c;当点击./action.ph…

ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果

前言 ORB-SLAM2源码学习&#xff1a;Initializer.cc⑦: Initializer::Triangulate特征点对的三角化_cv::svd::compute-CSDN博客 经过上面的三角化我们成功得到了三维点&#xff0c;但是经过三角化成功的三维点并不一定是有效的&#xff0c;需要筛选才能作为初始化地图点。 …

微信小程序1.1 微信小程序介绍

1.1 微信小程序介绍 内容提要 1.1 什么是微信小程序 1.2 微信小程序的功能 1.3 微信小程序使用场景 1.4 微信小程序能取代App吗 1.5 微信小程序的发展历程 1.6微信小程序带来的机会

STM32 GPIO配置 点亮LED灯

本次是基于STM32F407ZET6做一个GPIO配置&#xff0c;实现点灯实验。 新建文件 LED.c、LED.h文件&#xff0c;将其封装到Driver文件中。 双击Driver文件将LED.c添加进来 编写头文件&#xff0c;这里注意需要将Driver头文件声明一下。 在LED.c、main.c里面引入头文件LED.h LED初…

vulnhub靶场【kioptrix-3】靶机

前言 靶机&#xff1a;kioptrix-3&#xff0c;IP地址为192.168.1.74 攻击&#xff1a;kali&#xff0c;IP地址为192.168.1.16 都采用虚拟机&#xff0c;网卡为桥接模式 文章中涉及的靶机&#xff0c;来源于vulnhub官网&#xff0c;想要下载&#xff0c;可自行访问官网下载&a…