ViT-vision transformer

ViT-vision transformer

介绍

Transformer最早是在NLP领域提出的,受此启发,Google将其用于图像,并对分类流程作尽量少的修改。

起源:从机器翻译的角度来看,一个句子想要翻译好,必须考虑上下文的信息!

如:The animal didn’t cross the street because it was too tired将其翻译成中文,这里面就涉及了it这个词的翻译,具体it是指代animal还是street就需要根据上下文来确定,所以现在问题就变成,如何让机器学习上下文?

例如有两个特征,分别为性别和收入,二者做交互特征(简单的说即两个特征相乘),可以得到如:此数据为男人的状态下收入为多少的特征,则可以利用这个特征去分析性别对收入的影响,相对于同时考虑了性别和收入的关系。那么借鉴这个思想,相对于引入一个相乘的交互关系就可以去表示上下文信息了。而Attention在本质上用一句话概括就是:带权重的相乘求和。

在Attention中,假如我们要翻译it这个词,这时候it这个词称为query(Q)待查询。查询什么呢,查询句子中的其他单词包括自己(这里其他的单词包括自己称为(keys(K)),这里的查询操作相对于上文说的相乘,而在Attention中用的是点乘操作。如果还记得Attention的输入是Patch embedding的结果,即是一个个N维空间的向量,即Q和K代表的内容都为N维空间的向量,那么点乘即可以表示这两个向量的相似程度——Q*K = |Q||K|cosθ

Q和K相乘后可以得到一个代表词和词之间相似度的概念,这里记为S。如果我们对这个S取softmax,是不是相对于就得到了当前要查询的Q,到底对应哪个词的概率比较大的概率,这里记为P。

而Attention就是对P做权重加和的结果,而为什么还要对P做权重(这个权重也是可学习的)加和呢,其实我觉得这才是Attention的精髓,因为每个权重即代表了网络对于哪个概率对应下的内容更加注意,对于哪些内容不需要注意,使网络可以更加关注与需要注意的东西,其他无关的东西,通过这个权重,相对于舍弃了。而我们记这个权重为V。

思路:ViT算法中,首先将整幅图像拆分成若干个patch,然后把这些patch的线性嵌入序列作为Transformer的输入送入网络,然后使用监督学习的方式进行图像分类的训练。

具体流程

  1. 将图像拆分成若干个patch
  2. 将patches通过一个线性映射层,得到若干个token embedding
  3. 将多个token embedding concat一个cls_token(可学习参数)
  4. 每个参数均加上position embedding位置编码,防止无法找到原来的位置
  5. 将token embedding、cls_token和position embedding一同传入encoder模块
  6. encoder模块(L个block)
    1. Layer Norm:标准归一化(便于收敛)
    2. MSA/MHA:多头子注意力机制
    3. 输入输出作残差链接
    4. Layer Norm:标准归一化(便于收敛)
    5. MLP:全连接层(Linear+…)
  7. encoder的输出通过MLP Head作分类任务

优点:模型简单且效果好,较好的扩展性,模型越大效果越好。

与CNN结构对比

  • Transformer的平移不变性和局部感知性较差,在数据量不充分时,效果较差
  • 但是对于大量的训练数据,Transformer的效果更佳
  • 无需像CNN构造复杂的网络结构,CNN往往是不断加深网络,才能对刷新某任务的SOTA

在这里插入图片描述

模型结构

图像分块嵌入Patch Embedding

具体步骤:

  1. H ∗ W ∗ C H * W * C HWC的图像,变成一个 N ∗ ( P 2 ∗ C ) N * (P^2*C) N(P2C)的序列,这个序列由一系列展平的图像块构成,即把图像切分成小块后再展平,其中, N = H W / P 2 N=HW/P^2 N=HW/P2个图像块,每个图像块的维度为 P 2 ∗ C P^2*C P2C P P P表示图像块大小, C C C表示通道数量。

  2. 将每个图像块的维度由 P 2 ∗ C P^2*C P2C变换为 D D D,在此进行embedding,只需对每个 P 2 ∗ C P^2*C P2C图像块做一个线性变换,将维度压缩至 D D D

  3. ( N + 1 ) ∗ D (N+1)*D (N+1)D的序列作为encoder的输入。

    为啥是N+1呢?因为要多加上一个维度才能关联到全局的信息,这个恰好是class token

class PatchEmbed(nn.Module):"""2D Image to Patch Embedding"""def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):super().__init__()img_size = (img_size, img_size)patch_size = (patch_size, patch_size)self.img_size = img_sizeself.patch_size = patch_sizeself.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])self.num_patches = self.grid_size[0] * self.grid_size[1]self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):B, C, H, W = x.shapeassert H == self.img_size[0] and W == self.img_size[1], \f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = self.proj(x).flatten(2).transpose(1, 2)x = self.norm(x)return x

多头自注意力机制Multi-head Self-attention

多头较于单头的优势是增强了网络的稳定性和鲁棒性

( N + 1 ) ∗ D (N+1)*D (N+1)D的序列输入至encoder进行特征提取,其最重要的结构是多头自注意力机制,2 head的multi-head attention结构如下所示,具体步骤如下:

  1. 输入 a i a^i ai经过转移矩阵 W W W,得到 q i , k i , v i q^i,k^i,v^i qi,ki,vi,再分别切分成 q i , 1 , q i , 2 , k i , 1 , k i , 2 , v i , 1 , v i , 2 , q i , 1 . . . q^{i,1},q^{i,2},k^{i,1},k^{i,2},v^{i,1},v^{i,2},q^{i,1}... qi,1,qi,2,ki,1,ki,2,vi,1,vi,2,qi,1...
  2. 接着 q i , j 与 k i , j q^{i,j}与k^{i,j} qi,jki,j做attention,得到权重向量 α α α,将 α α α v i , j v^{i,j} vi,j进行加权求和,最终得到 b i , j b^{i,j} bi,j
  3. b i , j b^{i,j} bi,j拼接起来,通过一个线性层进行处理,得到最终的结果。

具体说说其中的attention, q i , j , k i , j 与 v i , j q^{i,j},k^{i,j}与v^{i,j} qi,j,ki,jvi,j计算 b i , j b^{i,j} bi,j的方法是缩放点积注意力 (Scaled Dot-Product Attention),加权内积得到 α α α
α 1 , i = q 1 ∗ k i d α_{1,i}=\frac{q^1*k^i}{\sqrt{d}} α1,i=d q1ki
其中,d是q和k的维度大小,除以一个 d \sqrt{d} d 可以达到归一化的效果。

接着,将 α 1 , i α_{1,i} α1,i取softmax操作,并与 v i , j v^{i,j} vi,j相乘得到最后结果。

在这里插入图片描述
在这里插入图片描述

class Attention(nn.Module):def __init__(self,dim,   # 输入token的dimnum_heads=8,qkv_bias=False,qk_scale=None,attn_drop_ratio=0.,proj_drop_ratio=0.):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = qk_scale or head_dim ** -0.5self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop_ratio)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop_ratio)def forward(self, x):# [batch_size, num_patches + 1, total_embed_dim]B, N, C = x.shape# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)# [batch_size, num_heads, num_patches + 1, embed_dim_per_head]q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]attn = (q @ k.transpose(-2, -1)) * self.scaleattn = attn.softmax(dim=-1)attn = self.attn_drop(attn)# @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]# transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]# reshape: -> [batch_size, num_patches + 1, total_embed_dim]x = (attn @ v).transpose(1, 2).reshape(B, N, C)x = self.proj(x)x = self.proj_drop(x)return x

多层感知机Multilayer Perceptron

class Mlp(nn.Module):"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return x

DropPath

一种特殊的 Dropout,用来替代传统的Dropout结构。作用是:若x为输入的张量,其通道为[B,C,H,W],那么drop_path的含义为在一个Batch_size中,随机有drop_prob的样本,不经过主干,而直接由分支进行恒等映射。

def drop_path(x, drop_prob: float = 0., training: bool = False):if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_()  # binarizeoutput = x.div(keep_prob) * random_tensorreturn outputclass DropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):return drop_path(x, self.drop_prob, self.training)

Class Token

假设我们将原始图像切分成 3 × 3 = 9个小图像块,最终的输入序列长度却是10,也就是说我们这里人为的增加了一个向量进行输入,我们通常将人为增加的这个向量称为 Class Token。

若没有这个向量,也就是将 N = 9 个向量输入 Transformer 结构中进行编码,我们最终会得到9个编码向量,可对于图像分类任务而言,我们应该选择哪个输出向量进行后续分类呢?两个方案可以实现:

  1. ViT算法提出了一个可学习的嵌入向量 Class Token,将它与9个向量一起输入到 Transformer 结构中,输出10个编码向量,然后用这个 Class Token 进行分类预测即可。
  2. 取除了cls_token之外的所有token的均值作为类别特征表示,即编码中的x[:,self.num_tokens:].mean(dim=1)

Positional Encoding

在self-attention中,输入是一整排的tokens,我们很容易知道tokens的位置信息,但是模型是无法分辨的,因为self-attention的运算是无向的,因此才使用positional encoding把位置信息告诉模型。

按照 Transformer 结构中的位置编码习惯,这个工作也使用了位置编码。不同的是,ViT 中的位置编码没有采用原版 Transformer 中的 sin/cos 编码,而是直接设置为可学习的 Positional Encoding。

MLP Head

得到输出后,ViT中使用了 MLP Head对输出进行分类处理,这里的 MLP Head 由 LayerNorm 和两层全连接层组成,并且采用了 GELU 激活函数。

参考链接:

  1. https://blog.csdn.net/qq_42735631/article/details/126709656?ops_request_misc=&request_id=&biz_id=102&utm_term=vision%20transformer%E6%A8%A1%E5%9E%8B&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-126709656.nonecase&spm=1018.2226.3001.4187
  2. https://blog.csdn.net/aixiaomi123/article/details/128025584?ops_request_misc=&request_id=&biz_id=102&utm_term=vision%20transformer%E6%A8%A1%E5%9E%8B&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-1-128025584.nonecase&spm=1018.2226.3001.4187
  3. https://github.com/google-research/vision_transformer/tree/main
  4. https://blog.csdn.net/lzzzzzzm/article/details/122963640?ops_request_misc=&request_id=&biz_id=102&utm_term=vit%20transformer%E4%B8%AD%E7%9A%84%E5%A4%9A%E5%A4%B4%E8%87%AA%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-1-122963640.nonecase&spm=1018.2226.3001.4187
    02&utm_term=vit%20transformer%E4%B8%AD%E7%9A%84%E5%A4%9A%E5%A4%B4%E8%87%AA%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%9C%BA%E5%88%B6&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-1-122963640.nonecase&spm=1018.2226.3001.4187
  5. https://blog.csdn.net/weixin_41803874/article/details/125729668

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/73226.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode每日一练-第102题-二叉树的层序遍历

一、思路 BFS 二、解题方法 通过广度优先搜索(BFS)的方式,按层遍历二叉树节点,并将每层的节点值保存在一个一维数组中,然后再将所有的一维数组存储在二维数组中,最后返回二维数组作为层序遍历的结果。 …

掌握无人机遥感数据预处理的全链条理论与实践流程、典型农林植被性状的估算理论与实践方法、利用MATLAB进行编程实践(脚本与GUI开发)以及期刊论文插图制作等

目录 专题一 认识主被动无人机遥感数据 专题二 预处理无人机遥感数据 专题三 定量估算农林植被关键性状 专题四 期刊论文插图精细制作与Appdesigner应用开发 近地面无人机植被定量遥感与生理参数反演 更多推荐 遥感技术作为一种空间大数据手段,能够从多时、多…

【英杰送书第三期】Spring 解决依赖版本不一致报错 | 文末送书

Yan-英杰的主 悟已往之不谏 知来者之可追 C程序员,2024届电子信息研究生 目录 问题描述 报错信息如下 报错描述 解决方法 总结 【粉丝福利】 【文末送书】 目录: 本书特色: 问题描述 报错信息如下 Description:An attempt…

重新理解 RocketMQ Commit Log 存储协议

最近突然感觉:很多软件、硬件在设计上是有 root reason 的,不是 by desgin 如此,而是解决了那时、那个场景的那个需求。一旦了解后,就会感觉在和设计者对话,了解他们的思路,学习他们的方法,思维…

【Hadoop 01】简介

目录 1 Hadoop 简介 2 下载并配置Hadoop 2.1 修改/etc/profile 2.2 修改hadoop-env.sh 2.3 修改core-site.xml 2.4 修改hdfs-site.xml 2.5 修改mapred-site.xml 2.6 修改yarn-site.xml 2.7 修改workers 2.8 修改start-dfs.sh、stop-dfs.sh 2.9 修改start-yarn.sh、s…

Spring MVC拦截器和跨域请求

一、拦截器简介 SpringMVC的拦截器(Interceptor)也是AOP思想的一种实现方式。它与Servlet的过滤器(Filter)功能类似,主要用于拦截用户的请求并做相应的处理,通常应用在权限验证、记录请求信息的日志、判断用…

小研究 - 微服务系统服务依赖发现技术综述(二)

微服务架构得到了广泛的部署与应用, 提升了软件系统开发的效率, 降低了系统更新与维护的成本, 提高了系统的可扩展性. 但微服务变更频繁、异构融合等特点使得微服务故障频发、其故障传播快且影响大, 同时微服务间复杂的调用依赖关系或逻辑依赖关系又使得其故障难以被及时、准确…

自监督去噪:Noise2Void原理和调用(Tensorflow)

文章原文: https://arxiv.org/abs/1811.10980 N2V源代码: https://github.com/juglab/n2v 参考博客: https://zhuanlan.zhihu.com/p/445840211https://zhuanlan.zhihu.com/p/133961768https://zhuanlan.zhihu.com/p/563746026 文章目录 1. 方法原理1.1 Noise2Noise回…

服务器数据恢复-raid5同步过程中又有一块磁盘报警的数据恢复案例

服务器数据恢复环境: 某研究院一台DELL存储,15块硬盘搭建的一组RAID5磁盘阵列。 该RAID5阵列只有一个卷组,该卷组占用了阵列的全部空间;该卷组只有一个起始位置为0扇区的XFS裸分区。 服务器故障&初检&分析: 该…

Spring Cloud Gateway - 新一代微服务API网关

Spring Cloud Gateway - 新一代微服务API网关 文章目录 Spring Cloud Gateway - 新一代微服务API网关1.网关介绍2.Spring Cloud Gateway介绍3.Spring Cloud Gateway的特性4.Spring Cloud Gateway的三大核心概念5.Gateway工作流程6.Gateway核心配置7.动态路由8.Predicate自定义P…

kafka第三课-可视化工具、生产环境问题总结以及性能优化

一、可视化工具 https://pan.baidu.com/s/1qYifoa4 密码:el4o 下载解压之后,编辑该文件,修改zookeeper地址,也就是kafka注册的zookeeper的地址,如果是zookeeper集群,以逗号分开 vi conf/application.conf 启…

Rust 数据类型 之 结构体(Struct)

目录 结构体(Struct) 定义与声明 结构体定义 结构体实例 结构体分类 单元结构体(Unit Struct) 元组结构体(Tuple Struct) 具名结构体(Named Struct) 结构体嵌套 结构体方法…

公网访问的Linux CentOS本地Web站点搭建指南

文章目录 前言1. 本地搭建web站点2. 测试局域网访问3. 公开本地web网站3.1 安装cpolar内网穿透3.2 创建http隧道,指向本地80端口3.3 配置后台服务 4. 配置固定二级子域名5. 测试使用固定二级子域名访问本地web站点 前言 在web项目中,部署的web站点需要被外部访问,则…

总结946

6:40起床 7:15~8:00早读,07年tex1,2 8:10~10:12 880第二章选填,题目有些综合,错的有些多呀,不要紧,拿下它,就有进步了。 10:28~11:27重做强化18讲6道题 12:10~2:15吃饭睡觉&…

Python实现GA遗传算法优化循环神经网络分类模型(LSTM分类算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世…

chatgpt赋能python:如何让Python暂停?

如何让Python暂停? Python是一种高级编程语言,常用于数据分析、机器学习等领域。在Python编程中,我们经常需要让程序执行暂停一段时间,等待某些操作完成。本文将介绍如何让Python暂停,以及如何在SEO中优化文章标题&am…

分享 7 个不错的 AI 工具

人工智能的世界继续让我们着迷,近期的 OpenAI ChatGPT 掀起人们对人工智能的更大的期待,本文收集了 7 个人工智能 (AI) 工具,其中大部分易于使用,有些更复杂……比如构建 ML 模型。 1. GFP-GAN:照片修复 GFP-GAN 是一…

世界杯决赛解析

新体育 2023-01-04 10:03 发表于北京 卡塔尔世界杯决赛跌宕起伏,精彩纷呈。双方主帅斗智斗勇,妙手迭出,奉献了一场难得一见的对攻大战。赛后回顾,阿根廷的斯卡洛尼和法国的德尚用兵有很多值得学习领悟之处。从战术的角度看&#x…

谈一谈我心中的世界杯

2022卡塔尔世界杯 开赛在即 不论你喜不喜欢足球 恐怕都无法脱离 世界杯带来的影响 如果不能和人随时随地 聊上几句世界杯话题 那得多尴尬 有了这份“伪球迷速成指南” 一定能帮助你 在各种尬聊场合 脱颖而出↓↓ 1. 世界杯的由来 世界杯每4年举办一次。世界杯又称生…

十分钟带你玩转人工智能——调用百度AI接口实现文字转语音

调用别人的接口,实现人工智能就是站在巨人的肩膀上 打开百度AI,点这个控制台,(你要是没有注册 ,就注册一下,很简单的) 点开这个语音技术 创建一下应用 好了以后,按照这个图的步…