论文笔记——Influence Maximization in Undirected Networks

Influence Maximization in Undirected Networks

  • Contribution
  • Motivation
  • Preliminaries
    • Notations
  • Main results
    • Reduction to Balanced Optimal Instances
    • Proving Theorem 3.1 for Balanced Optimal Instances

Contribution

好久没发paper笔记了,这篇比较偏理论,可能边看边记比较高效一些,仅作为个人笔记,如有解读不到的还请包涵。这篇paper的贡献有两个,首先是证明了在无向图中使用greedy可以突破 1 − 1 / e 1-1/e 11/e的barrier(也就是greedy在无向图上会更强),达到 1 − 1 / e + c 1-1/e+c 11/e+c的近似,其中 c c c为常数;其次,该论文证明了无向图上的influence maximization是 A P X − h a r d APX-hard APXhard

Motivation

作者先给了一个比较紧的例子:
在这里插入图片描述
这里蓝色为OPT(optimal,最优解),红色为 G R D GRD GRD(greedy算法选择的种子节点)。注意,有向图中greedy选择 v 1 , v 2 v_1,v_2 v1,v2是因为 v a l ( v 1 ) = v a l ( v 2 ) = v a l ( v 3 ) = 1 val(v_1)=val(v_2)=val(v_3)=1 val(v1)=val(v2)=val(v3)=1。然而在无向图中,情况会更不一样:
在这里插入图片描述
这里 v a l val val为节点的影响力,同样,这里 O P T = { v 2 , v 3 } OPT = \{v_2,v_3\} OPT={v2,v3}(因为 v 2 , v 3 v_2,v_3 v2,v3的权重大),这里依然有 v a l ( { v 2 , v 3 } ) = 2 val(\{v_2,v_3\})=2 val({v2,v3})=2。然而贪心算法会可能会选择 G R D = { v 1 , v 2 } GRD = \{v_1,v_2\} GRD={v1,v2},且有 v a l ( v 2 ) = v a l ( v 3 ) = 1 + 0 + 1 ∗ 1 / 2 ∗ 1 / 2 = 5 / 4 val(v_2) =val(v_3) = 1 + 0 + 1 * 1/2 * 1/2 = 5/4 val(v2)=val(v3)=1+0+11/21/2=5/4,那么根据Greedy的习惯, G R D = { v 2 , v 3 } GRD = \{v_2,v_3\} GRD={v2,v3},也就是说,在这个例子中,greedy会选出最优解
同样的结构,greedy在无向图和有向图上的表现却大相径庭,背后原因令人暖心:在无向图中,greedy选出的节点的影响力会和OPT的影响力重叠更少。然而这只是一个例子,不具备代表性,为了generalize这一现象,作者将使用 XYZ \textit{XYZ} XYZ lemma来构建反例(如下图)来说明在无向图中, k = 1 k=1 k=1时,greedy算法带来的近似比可以任意接近 3 / 4 3/4 3/4 k k k变大时,近似比则可以任意接近 1 − 1 / e 1-1/e 11/e
在这里插入图片描述
作者的整体思路分三步走:

  • Counter Example :首先构建worst case “balanced OPT”。在这个case中greedy算法的影响力函数 v a l ( . ) val(.) val(.)几乎是线性的,且每个OPT中的节点的影响力几乎是一样的。在这种情况下,greedy的近似比是 1 − 1 / e 1-1/e 11/e;除此之外,greedy的近似比都大于 1 − 1 / e 1-1/e 11/e
  • Linearity:在无向图中考虑 v a l ( . ) val(.) val(.)函数的线性情况。这里指的是,无向图中的OPT中的元素必须尽可能的不处在同一个连通分量中: v a l ( O P T ) − v a l ( O P T ∖ o i ) > v a l ( o i ) val(OPT) - val(OPT \setminus {o_i}) > val(o_i) val(OPT)val(OPToi)>val(oi),即节点 o i o_i oi的增益大于其本身的影响力。这对greedy有很大的影响。
  • Technical part:设 S S S O P T OPT OPT中前 k / 4 k/4 k/4个种子,考虑greedy选择剩余的种子的情况:作者证明了要么greedy会选择具有较大增益的点,达到 1 − 1 / e + c 1-1/e+c 11/e+c的近似;要么就是在balanced form情况下,OPT会导致矛盾。这里矛盾的点在于:在balance form时,greedy在选完前 4 / k 4/k 4/k个种子后,接着应该继续选具有最大增益的点(Lemma 4.2),否则就不会具有比 1 − 1 / e 1-1/e 11/e更好的近似比;换句话说,假设greedy不能提供更好的近似比,那么应该选出增益低的节点,但是由于 M ′ M' M(后续会讲到)中的节点是 5 ϵ 5\epsilon 5ϵ-uniform的,和 S S S在一个连通分量中的概率会很低,因此要选一个 O i ∈ M ′ O_i\in M' OiM具有低增益是不可能的,因为增益迪就说明 O i O_i Oi和S在同一个连通分量里面。证明的过程用到了一些technical的概率分析,描述了 XYZ \textit{XYZ} XYZ Lemma。

Preliminaries

Notations

notationsMeaning
< G ( V , E ) , U , p , w , k > <G(V,E),U,p,w,k> <G(V,E),U,p,w,k>An undirected graph
Ua valid seed set
p p phe probability in edges
w w wthe weight on node
k k kan integer
H ( V ′ , E ′ ) H(V',E') H(V,E)an live-edge graph of G G G
v a l ( S ∣ T ) val(S|T) val(ST) v a l ( S ∪ T ) − v a l ( T ) val(S \cup T) - val(T) val(ST)val(T)
S → T S \rightarrow T STsome vertices in S S S in the same component of T T T

此外,这里作者提供了一个加权图和无权图互相转化的方法。故文章中提到的图都是无权图。

Main results

在这里插入图片描述
这也是这篇paper的主要贡献,接下来是定理3.1的证明,也就是文章中具有technical的部分。首先构建lemma 3.1和lemma 3.2,这两个lemma想做的事情是说,当OPT不是特定的"balance"形式的时候,定理3.1是成立的。这里的“balance”其实就是worst case。

Reduction to Balanced Optimal Instances

首先定义了归一化影响力,具体定义如下。这个式子衡量了 X X X中节点的平均影响力和OPT中总体节点影响力的比值。 ρ ( x ) > 1 \rho(x) >1 ρ(x)>1说明 X X X中节点的平均影响力比OPT的节点平均影响力🐮。
在这里插入图片描述
给定 ϵ > 0 \epsilon > 0 ϵ>0,我们说一组节点 X X X ϵ \epsilon ϵ-uniform 的,若其每个不包含x节点的集合 X X X的元素的normalized influence浮动都很小,即 ( 1 − ϵ ) ≤ ρ ( x ∣ X ∖ x ) ≤ ( 1 + ϵ ) (1-\epsilon) \leq \rho(x \mid X \setminus {x}) \leq (1 + \epsilon) (1ϵ)ρ(xXx)(1+ϵ),那么该组节点的发挥就很稳定,称之为 ϵ \epsilon ϵ-uniform。
X X X ϵ \epsilon ϵ-independent的:若每个节点和X中其他节点出现在同一连通分量的概率 P r [ x → X { x } ] ≤ ϵ Pr[x \rightarrow X\ \{x\}] \leq \epsilon Pr[xX {x}]ϵ
X X X ϵ \epsilon ϵ-balanced:同时满足 ϵ \epsilon ϵ-uniform和 ϵ \epsilon ϵ-independent,也就是说这组节点即均匀分布,又发挥稳定( v a l ( . ) val(.) val(.)几乎是线性的)。
这个章节的目的是想说明对于这样的一个 ϵ > 0 \epsilon > 0 ϵ>0,greedy要么可以实现一个 1 − 1 / e + f ( ϵ ) 1-1/e+f(\epsilon) 11/e+f(ϵ)的近似,要么OPT就是 ϵ \epsilon ϵ-balanced。

在这里插入图片描述
Lemma 3.1说明了greedy算法严格保证了一个大于 1 − 1 / e 1-1/e 11/e的近似比。证明如下:

在这里插入图片描述

在这里插入图片描述
接下来的lemma说明,OPT一定满足下面两个条件之一:1、要么包含了一组 X X X,满足归一化后的X的影响力严格大于1且 v a l ( X ) = Ω ( v a l ( O P T ) ) val(X) = \Omega(val(OPT)) val(X)=Ω(val(OPT)),即 X X X的lower bound是 v a l ( O P T ) val(OPT) val(OPT);2、要么OPT可以根据条件划分为L,H,M。L的划分方法如下:
在这里插入图片描述
其实这里 L L L存放了一组点,满足 v a l ( L ) ≤ ϵ ⋅ v a l ( O P T ) val(L) \leq \epsilon \cdot val(OPT) val(L)ϵval(OPT),也就是将 o i o_i oi加入 Z Z Z(不包含 o i o_i oi)带来的收益小于 ( 1 − ϵ ) v a l ( O P T ) k \frac{(1-\epsilon)val(OPT)}{k} k(1ϵ)val(OPT)的那部分点,这些点至少会有 ϵ ⋅ k \epsilon \cdot k ϵk个。对于剩下的 k − ϵ ⋅ k k - \epsilon \cdot k kϵk个点,我们将它划分到 X X X中。
在这里插入图片描述
这样一来, ρ ( X ) > 1 \rho (X) >1 ρ(X)>1 v a l ( X ) = Ω ( v a l ( O P T ) ) val(X) = \Omega(val(OPT)) val(X)=Ω(val(OPT))

在这里插入图片描述

∣ L ∣ ≤ ϵ ⋅ k \mid L \mid \leq \epsilon \cdot k L∣≤ϵk,则不存在 X X X,那么继续划分。对于M和H,划分方法如下:
在这里插入图片描述
也就是说,在一个集合 Z = O 1 , . . . , O k Z = {O_1,...,O_k} Z=O1,...,Ok中,L是Z中一系列增益小于 ( 1 − ϵ ) v a l ( O P T ) k \frac{(1-\epsilon)val(OPT)}{k} k(1ϵ)val(OPT)的节点,那么对于Z中剩下的点,选出前 j j j个连续增益最大的点 { O δ ( 1 ) , . . . , O δ ( j ) } \{O_{\delta(1)},...,O_{\delta(j)}\} {Oδ(1),...,Oδ(j)},若这些点的影响力大于 ϵ 2 v a l ( O P T ) \epsilon^2val(OPT) ϵ2val(OPT),则将其划分为X;否则为 H H H,剩下的点为 M M M。这波操作下来, L , H , M L,H,M L,H,M中的点都不会有normalized influence大于1的情况,也就是说,greedy在这种情况下不会出现比 1 − 1 / e 1-1/e 11/e好的近似比。根据划分的方法,满足lemma3.2中的条件:M是 ϵ \epsilon ϵ-uniform的。
证明如下:
在这里插入图片描述

接下来肯定是证明 ϵ \epsilon ϵ-independent了。但这里只证明 M M M中的部分。对于M,有:
在这里插入图片描述
也就是说, M ′ M' M存在于 M M M中,且大小至少为 ∣ M ∣ − ϵ k \mid M\mid-\epsilon k Mϵk,且 M ′ M' M中每个点 O i O_i Oi M ′ M' M的连通分量中的概率最多为 5 ϵ 5\epsilon 5ϵ。这个证明暂且skip,没看懂。

Proving Theorem 3.1 for Balanced Optimal Instances

在这里插入图片描述

现在的情况是OPT被分成上面的样子了,这里 M ′ M' M满足 5 ϵ 5\epsilon 5ϵ-independent和 ϵ \epsilon ϵ-uniform。按照之前的证明思路,若是有一个集合满足 ϵ \epsilon ϵ-balanced,那么该集合上的 v a l ( . ) 就是几乎就是线性的。接下来的证明策略如下。首先证明,给定 val(.)就是几乎就是线性的。接下来的证明策略如下。首先证明,给定 val(.)就是几乎就是线性的。接下来的证明策略如下。首先证明,给定S = {g_1,g_2,…,g_{k/4}}$,如果贪婪算法没有达到比 1 − 1 / e 1−1/e 11/e更好的近似, 那么每个 O i ∈ M ′ O_i\in M' OiM的边际影响一定不能太大(lemma 3.4),否则就会有greedy超过 1 − 1 / e 1-1/e 11/e的情况发生。
在这里插入图片描述
在这里插入图片描述

Lemma3.4描述了greedy选完前 k / 4 k/4 k/4之后依然还能选出增益大于 4 / 5 v a l ( O P T ) k 4/5 \frac{val(OPT)}{k} 4/5kval(OPT)的情况。接下来的Lemma 3.5会考虑矛盾的情况:当 M ′ M' M中还存在更低的uniform集合。
在这里插入图片描述
L e m m a 3.4 Lemma 3.4 Lemma3.4 L e m m a 3.5 Lemma 3.5 Lemma3.5似乎是矛盾的,因为粗略地说,当 O i O_i Oi S S S在同一连通分量中的概率很大时,给定S,加入 O i O_i Oi的边际影响会很小。为了正式的说明这一点,我们必须为连通分量的大小和连接性事件之间的相关性建立界限;这个界限在XYZ引理(引理3.6)中被定义。
在这里插入图片描述

这里作者给出了两个定义:
在这里插入图片描述
对于一个点 j ∈ E i j \in E_i jEi,definition 1说 j j j对于 O i ∈ M ′ ′ O_i \in M'' OiM′′是"exclusive":当 j j j M ′ ′ M'' M′′ S S S的连通分量中,不在 H H H的连通分量中时, j j j被感染的概率依然小;
definition 2说 j j j对于 O i ∈ M ′ ′ O_i \in M'' OiM′′是"good":definition 2想说的是, M ′ ′ M'' M′′和S都影响j的概率并不比 M ′ ′ M'' M′′影响 j j j的概率小多少。

最后,将XYZ引理应用于 M ′ M' M和S,我们将证明, M ′ ′ M'' M′′中大部分的影响力都是由于 O i O_i Oi影响了一个"exclusive and good" j j j
在这里插入图片描述
到目前为止,我们集齐了所有的武器,接下来可以证明theorem 3.1了。

这里证明的思路大概如下:先假设theorem 3.1不成立,即 v a l ( G R D ) ≤ ( 1 − 1 / e + c ) v a l ( O P T ) val(GRD)\leq (1-1/e+c)val(OPT) val(GRD)(11/e+c)val(OPT),那么由lemma 3.1,3.2和3.3可将OPT分解为 L , M ′ , M ′ ′ , H L,M',M'',H L,M,M′′,H且满足lemma 3.5( ∣ M ′ ′ ∣ ≥ k / 3 a n d P r [ O i → S ] < 14 ϵ |M''| \geq k/3 and Pr[O_i \rightarrow S] < 14 \sqrt{\epsilon} M′′k/3andPr[OiS]<14ϵ for all O i ∈ M ′ ′ O_i \in M'' OiM′′)。通过随后的几个Lemma,作者证明了再这种情况下依然有 v a l ( S ) ≥ c 2 ⋅ 1 δ v a l ( O P T ) val(S) \geq c_2 \cdot \frac{1}{\delta}val(OPT) val(S)c2δ1val(OPT)(这里S是GRD的前k个种子, δ = 14 ϵ \delta = 14\sqrt{\epsilon} δ=14ϵ ),因此原结论成立。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/75236.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

同城预约上门小程序开发:为用户带来便捷与个性化的服务体验“

上门服务小程序开发具有许多优势&#xff0c;下面我将介绍一些重要的优点。   方便快捷&#xff1a;上门服务小程序可以让用户随时随地通过手机进行预约和安排上门服务。无需等待电话回复或亲自前往实体店面&#xff0c;用户可以直接在小程序中选择时间、服务类型和地点&…

有哪些开源和非开源的项目管理工具?

开源和非开源项目管理工具各有其特点和优势。下面是一些常见的开源和非开源项目管理工具以及它们的简要介绍。 开源项目管理工具&#xff1a; OpenProject&#xff1a;OpenProject 是一个功能强大、易于使用的开源项目管理工具。它提供了项目计划、任务管理、团队协作、文档管…

网格简化(QEM)学习笔记

文章目录 网格简化(QEM)1 概述与原理1.1 网格简化的应用1.2 常见的简化操作1.3 二次误差度量 2 算法流程2.1 逐步分析 3 Python代码实现3.1 测试结果 4 总结参考 网格简化(QEM) 1 概述与原理 网格简化&#xff0c;通过减少复杂网格数据的顶点、边和面的数量简化模型的表达&am…

【Spring Cloud】Gateway的配置与使用

文章目录 前言第一步&#xff0c;创建一个springboot工程第二步&#xff0c;添加依赖第三步&#xff0c;编写yml文件第四步&#xff0c;启动主启动类总结 前言 Gateway其实是springcloud 原生的东西&#xff0c;但是我还是想放在这里讲&#xff0c;因为我们使用nacos时&#x…

odoo16 上传/下载 文件接口的实现

突然有个需求说需要编写一个上传pdf 接口 首先需要准备如下 xx.xx模型 module 部分 如下&#xff1a; attachment_count fields.Integer(compute_compute_attachment_count, string附件数量, requiredTrue)def _compute_attachment_count(self):# 附件数量计算attachment_dat…

HCIP中期实验

1、该拓扑为公司网络&#xff0c;其中包括公司总部、公司分部以及公司骨干网&#xff0c;不包含运营商公网部分。 2、设备名称均使用拓扑上名称改名&#xff0c;并且区分大小写。 3、整张拓扑均使用私网地址进行配置。 4、整张网络中&#xff0c;运行OSPF协议或者BGP协议的设备…

常见的数据结构(顺序表、顺序表、链表、栈、队列、二叉树)

线性表&#xff08;Linear List&#xff09;  1.什么是线性表 2.线性表的特点 3.线性表的基本运算 顺序表 1.什么是顺序表 2.时间复杂度&#xff1a; 链表 1.什么是链表 2.单向链表 3. 双向链表 4.ArrayList和LinkedList的使用 栈Stack  1.什么是栈  2.栈的基本方法 队列…

AlexNet卷积神经网络-笔记

AlexNet卷积神经网络-笔记 AlexNet卷积神经网络2012年提出 测试结果为&#xff1a; 通过运行结果可以发现&#xff0c; 在眼疾筛查数据集iChallenge-PM上使用AlexNet&#xff0c;loss能有效下降&#xff0c; 经过5个epoch的训练&#xff0c;在验证集上的准确率可以达到94%左右…

Excel 超牛的格式调整汇总——你还在担心你做出来的表不好看吗

Excel格式调整技巧 绘图逆序绘制条形图设置条形图宽度 条件格式透视表上的条件格式 数字格式千分位逗号数字同时显示 K M 数据分列非重复计数区域透视图新增计算列隐藏行列快捷键其他小技巧 绘图 逆序绘制条形图 设置条形图宽度 条件格式 透视表上的条件格式 条件格式随切片…

vue、uniapp直传阿里云文档

前端实现文件上传到oss&#xff08;阿里云&#xff09;适用于vue、react、uni-app&#xff0c;获取视频第一帧图片 用户获取oss配置信息将文件上传到阿里云&#xff0c;保证了安全性和减轻服务器负担。一般文件资源很多直接上传到服务器会加重服务器负担此时可以选择上传到oss&…

Typescript 枚举类型

枚举是用来表示一组明确的可选值列表 // enum是枚举类型的关键字 //枚举如果不设置值&#xff0c;默认从0开始 enum Direction {Up, // 0 Down, // 1 Left, // 2Right // 3} //如果给第一个值赋值为100&#xff0c;则第二、第三第四个都会在第一个的基础上1 分别是101,102…

MySQL数据备份与还原

一、数据备份 1、使用mysqldump命令备份 mysqldump命令将数据库中的数据备份成一个文本文件。表的结构和表中的数据将存储在生成的文本文件中。 mysqldump命令的工作原理很简单。它先查出需要备份的表的结构&#xff0c;再在文本文件中生成一个CREATE语句。然后&#xff0c;将表…

用友和金蝶:管理软件巨头引领企业转型潮流,新技术开始崭露头角

打造企业帝国的管理软件 在当今企业界&#xff0c;管理软件已经成为提高工作效率、优化业务流程的重要工具。 在众多管理软件中&#xff0c;用友和金蝶凭借其卓越的功能和全面的解决方案成为了众多企业的首选。 用友和金蝶的管理软件是国内知名企业管理软件&#xff0c;广泛应…

为什么大多数团队推行自动化测试最后却不了了之?

随着软件行业的快速发展&#xff0c;接口测试用例在软件开发中扮演着越来越重要的角色。自动化测试作为软件测试的一个重要分支&#xff0c;一般可以提高测试效率和质量&#xff0c;节约测试成本和时间&#xff0c;但是在实际推行过程中&#xff0c;大多数团队最终却难以持续实…

vue3+uniapp自定义tabbar

首先把tabbar中的元素写在一个list中用v-for进行渲染 用一个interface进行定义接口&#xff0c;这样别人在review你的代码就可以清晰知道你的tabbar包含什么元素。 利用typescript特性进行类型定义&#xff0c;可以省去很多麻烦 import { reactive } from "vue" imp…

CentOS 项目发出一篇奇怪的博文

导读最近&#xff0c;在红帽限制其 RHEL 源代码的访问之后&#xff0c;整个社区围绕这件事发生了很多事情。 CentOS 项目发出一篇奇怪的博文 周五&#xff0c;CentOS 项目董事会发出了一篇模糊不清的简短博文&#xff0c;文中称&#xff0c;“发展社区并让人们更容易做出贡献…

SpringBoot搭建WebSocket初始化

1.java后端的maven添加websocket依赖 <!-- websocket依赖--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId></dependency>2.实例化ServerEndpointExport…

【C语言】初阶结构体

&#x1f388;个人主页&#xff1a;库库的里昂 &#x1f390;CSDN新晋作者 &#x1f389;欢迎 &#x1f44d;点赞✍评论⭐收藏 ✨收录专栏&#xff1a;C语言初阶 ✨其他专栏&#xff1a;代码小游戏 &#x1f91d;希望作者的文章能对你有所帮助&#xff0c;有不足的地方请在评论…

敷尔佳IPO首日,仅8名研发人员,“医用面膜第一股“是智商税?

“医美面膜第一股“来了。 今日(8月1日)&#xff0c;哈尔滨敷尔佳科技发展有限公司(下称“敷尔佳”&#xff0c;301371SZ)正式在深交所挂牌上市。 敷尔佳此次IPO募资净额为18.97亿元&#xff0c;开盘价为80.00元/股&#xff0c;发行价55.68元/股&#xff1b;开盘即涨43.67%。…

caj文件怎么转换成pdf?了解一下这种方法

caj文件怎么转换成pdf&#xff1f;如果你曾经遇到过需要将CAJ文件转换成PDF格式的情况&#xff0c;那么你一定知道这是一件麻烦的事情。幸运的是&#xff0c;现在有许多软件和工具可以帮助你完成这项任务。下面就给大家介绍一款使用工具。 【迅捷PDF转换器】是一款功能强大的工…