【机器学习】深入探索SVM:支持向量机的原理与应用

 

 

目录

🍔 SVM引入

1.1什么是SVM?

1.2支持向量机分类

1.3 线性可分、线性和非线性的区分

🍔 小结

学习目标

  1. 知道SVM的概念

🍔 SVM引入

1.1什么是SVM?

看一个故事,故事是这样子的:

在很久以前的情人节,一位大侠要去救他的爱人,但魔鬼需要大侠先攻克他设置的防线,于是和他玩了一个游戏game。

魔鬼在桌子上似乎有规律放了两种颜色的球,说:“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”

于是大侠这样放,干的不错?

然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。

大侠苦思冥想似乎记得学过SVM技术,于是就采用SVM试试。

这里的 SVM就试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。

现在即使魔鬼放了更多的球,棍仍然是一个好的分界线。

在SVM 工具箱中有另一个更加重要的 trick(招式) 。 魔鬼看到大侠已经学会了前面一个trick,于是魔鬼给了大侠一个新的挑战。

现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?当然又想起了放大招---SVM。像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠练就的轻功,大侠抓起一张纸,插到了两种球的中间。

现在,从魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。

最后,魔鬼被折服了

再之后,无聊的大人们,把这些球叫做 「data」 ,把棍子叫做 「classifier」 , 最大间隙trick 叫做 「optimization」 , 拍桌子叫做 「kernelling」 , 那张纸叫做 「hyperplane」。

1.2支持向量机分类

支持向量机的基本模型是定义在特征空间上的间隔最大的线性分类器。它是一种二分类的模型,当采用了核技巧之后,支持向量机可以用于非线性分类。不同类型的支持向量机解决不同问题:

(1)线性可分支持向量机(硬间隔支持向量机):

当训练数据线性可分的时候,通过硬间隔最大化,学习得到一个线性可分支持向量机。

(2)线性支持向量机(软间隔支持向量机):

当训练数据近似线性可分时,通过软间隔最大化,学习一个线性支持向量机。

(3)非线性支持向量机:

当训练数据不可分的时候,通过使用核技巧以及软间隔最大化,学得一个非线性支持向量机。

1.3 线性可分、线性和非线性的区分

第一个图是线性可分,我们借助线性可分支持向量机完成分类。第二个图是不能完全线性可分,我们通过线性支持向量机解决。第三个图是完全线性不可分的,需要借助非线性支持向量机分类。

通过上述描述,我们抽象其中的蓝球和红球,并将两种颜色的球转化为二维平面上的点坐标,篮球映射为黑球,红球映射为白球。使用直线H1,H2和H3分类这两类颜色的球,图中的H1不能很好的区分黑球和白球,可以看到H2和H3都能很好的区分这两种颜色的球。

区分数据集。 我们能够想到和H2和H3这样的直线一样可以区分两种颜色的球体有很多种条直线,虽然他们都能够很好的分类已经存在的黑球和白球,也就是我们之前讲到的训练集分类效果很好,训练误差为0。但是不能保证这些超平面在未知的实例上运行效果会很好,和上面魔鬼和大侠的例子一样,当魔鬼放置更多的黑球或白球的时候,我们提到的这些平面还能很好的让这些未知的球得到很好的分类吗?

我们这里考虑泛化误差的影响。 根据在检验样本上的运行效果,分类器必须从这些分类超平面中选择一个来表示它的决策边界。满足这个条件的很多,但是使得泛化误差最小的条件就是边际margin最大的情况。如左图的边际不及右边的边际margin大,我们选择右边的图作为边界最好的划分。因为 在有新的点出现的时候左边图的边际会错误分类一些点,而右侧就能很好的分类。

🍔 小结

1.SVM学习的目的在于找到具有最大边缘的超平面。

为啥:因为最大边缘超平面可以使得我们的训练误差很小的情况下,当有新数据的到来时也能使得测试误差达到最小。

2.支持向量概念:

所有坐落在边际两边的超平面上的点被称作” 支持向量 (support vectors)"。

如下图,这两个特殊点是支撑我们构建最大边缘超平面的。这些点所在的边缘超平面上的点,称为支持向量。下图中红色的点对右图中的红色的直线或平面有支撑作用,这些点是关键点。而其他点对最优超平面都没有影响。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/7724.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Dev-C++分辨率低-解决办法

目录 【工具】Dev-C分辨率低-解决办法问题背景完整操作指南第一步:打开属性设置 【工具】Dev-C分辨率低-解决办法 问题背景 Dev-C因版本老旧(长期未更新),在高分辨率显示器上存在界面模糊问题。通过修改Windows兼容性设置可优化…

[VSCode] vscode下载安装及安装中文插件详解(附下载链接)

VSCode 是一款由微软开发且跨平台的免费源代码编辑器;该软件支持语法高亮、代码自动补全、代码重构、查看定义功能,并且内置了命令行工具和Git版本控制系统。 下载链接:https://pan.quark.cn/s/3a90aef4b645 提取码:NFy5 通过上面…

javascript-es6 (一)

作用域(scope) 规定了变量能够被访问的“范围”,离开了这个“范围”变量便不能被访问 局部作用域 函数作用域: 在函数内部声明的变量只能在函数内部被访问,外部无法直接访问 function getSum(){ //函数内部是函数作用…

c语言中的数组(上)

数组的概念 数组是⼀组相同类型元素的集合; 数组中存放的是1个或者多个数据,但是数组元素个数不能为0。 数组中存放的多个数据,类型是相同的。 数组分为⼀维数组和多维数组,多维数组⼀般⽐较多⻅的是⼆维数组。 数组创建 在C语言…

C#,入门教程(05)——Visual Studio 2022源程序(源代码)自动排版的功能动画图示

上一篇: C#,入门教程(04)——Visual Studio 2022 数据编程实例:随机数与组合https://blog.csdn.net/beijinghorn/article/details/123533838https://blog.csdn.net/beijinghorn/article/details/123533838 新来的徒弟们交上来的C#代码&#…

用Python和PyQt5打造一个股票涨幅统计工具

在当今的金融市场中,股票数据的实时获取和分析是投资者和金融从业者的核心需求之一。无论是个人投资者还是专业机构,都需要一个高效的工具来帮助他们快速获取股票数据并进行分析。本文将带你一步步用Python和PyQt5打造一个股票涨幅统计工具,不…

为什么IDEA提示不推荐@Autowired❓️如果使用@Resource呢❓️

前言 在使用 Spring 框架时,依赖注入(DI)是一个非常重要的概念。通过注解,我们可以方便地将类的实例注入到其他类中,提升开发效率。Autowired又是被大家最为熟知的方式,但很多开发者在使用 IntelliJ IDEA …

C# OpenCV机器视觉:利用CNN实现快速模板匹配

在一个阳光灿烂的周末,阿强正瘫在沙发上,百无聊赖地换着电视频道。突然,一则新闻吸引了他的注意:某博物馆里一幅珍贵的古画离奇失踪,警方怀疑是被一伙狡猾的盗贼偷走了,现场只留下一些模糊不清的监控画面&a…

iOS 集成ffmpeg

前言 本来打算用flutter去实现一个ffmpeg的项目的,不过仔细分析了一下,我后期需要集成OpenGL ES做视频渲染处理,OpenGL ES的使用目前在flutter上面还不是很成熟,所以最后还是选择用原生来开发 ffmpeg集成到iOS工程 iOS对于ffmp…

tmux 介绍与使用

tmux有什么用 1.关闭终端时,在终端运行着的程序不会一起被关闭。 比如,我在终端命令行执行htop。当我关闭这个终端时,htop进程也随着这个终端的关闭而结束。我在终端运行着一个程序,它应该一直运行着。我一不小心把终端关闭了&a…

独立开发者常见开发的应用有哪些

1. 工具类应用 工具类应用旨在解决用户的特定问题或提高效率,通常功能简单,但实用性强。这类应用开发周期较短,适合独立开发者。 常见例子: 生产力工具:待办事项管理(如 Todoist)、日历同步工…

Linux Futex学习笔记

Futex 简介 概述: Futex(Fast Userspace Mutex)是linux的一种特有机制,设计目标是避免传统的线程同步原语(如mutex、条件变量等)在用户空间和内核空间之间频繁的上下文切换。Futex允许在用户空间处理锁定和等待的操作&#xff0…

Neural networks 神经网络

发展时间线 基础概念 多层神经网络结构 神经网络中一个网络层的数学表达 TensorFlow实践 创建网络层 神经网络的创建、训练与推理 推理 推理可以理解为执行一次前向传播 前向传播 前向传播直观数学表达 前向传播直观数学表达的Python实现 前向传播向量化实现 相关数学知识…

浅谈Redis

2007 年,一位程序员和朋友一起创建了一个网站。为了解决这个网站的负载问题,他自己定制了一个数据库。于2009 年开发,称之为Redis。这位意大利程序员是萨尔瓦托勒桑菲利波(Salvatore Sanfilippo),他被称为Redis之父,更…

在Qt中实现点击一个界面上的按钮弹窗到另一个界面

文章目录 步骤 1:创建新窗口类步骤 2:设计窗口的 UI步骤 3:设计响应函数 以下是一个完整的示例,展示在Qt中如何实现在一个窗口中通过点击按钮弹出一个新窗口。 步骤 1:创建新窗口类 假设你要创建一个名为 WelcomeWidg…

【大数据】机器学习----------强化学习机器学习阶段尾声

一、强化学习的基本概念 注: 圈图与折线图引用知乎博主斜杠青年 1. 任务与奖赏 任务:强化学习的目标是让智能体(agent)在一个环境(environment)中采取一系列行动(actions)以完成一个…

攻防世界bad_python

文件名pyre.cpython-36.pyc,说明是在python3.6环境下编译的,要把pyc反编译成py 但是显示失败了,结合题的名字文件的应该是文件头部被破坏 把第一行改为33 0D 0D 0A 0C 63 4A 63 61 02 00 00 E3 00 00 00 之后就能反编译了,得到源…

网络安全 | F5-Attack Signatures详解

关注:CodingTechWork 关于攻击签名 攻击签名是用于识别 Web 应用程序及其组件上攻击或攻击类型的规则或模式。安全策略将攻击签名中的模式与请求和响应的内容进行比较,以查找潜在的攻击。有些签名旨在保护特定的操作系统、Web 服务器、数据库、框架或应…

Linux的常用指令的用法

目录 Linux下基本指令 whoami ls指令: 文件: touch clear pwd cd mkdir rmdir指令 && rm 指令 man指令 cp mv cat more less head tail 管道和重定向 1. 重定向(Redirection) 2. 管道(Pipes&a…

Qt监控系统辅屏预览/可以同时打开4个屏幕预览/支持5x64通道预览/onvif和rtsp接入/性能好

一、前言说明 在监控系统中,一般主界面肯定带了多个通道比如16/64通道的画面预览,随着电脑性能的增强和多屏幕的发展,再加上现在监控摄像头数量的增加,越来越多的用户希望在不同的屏幕预览不同的实时画面,一个办法是打…