FreeRtos的使用教程

定义:

        RTOS实时操作系统, (Real Time Operating System), 指的是当外界事件发生时, 能够有够快的响应速度,调度一切可利用的资源, 控制实时任务协调一致的运行。

特点:

        支持多任务管理, 处理多个事件, 实现更复杂的逻辑。

与计算机操作系统的区别:

        RTOS专注于 轻量级, 实时性, 稳定性, 相对于计算机主流系统, RTOS有严格的时间控制和响应速度, 成本低, 资源开销小, 所以可以用于嵌入式领域。

配置:

core设置非安全模式下的内核支持

heap:设置第四种堆区设置方式

Core: 选择 不适用安全模式

Heap: 在 FreeRTOS内, 支持五种堆空间开辟的方法:

使用过程中的状态转换关系图

任务调度的核心:

抢占式调度,时间片轮询 

任务的创建:

通过cubeMX进行任务的添加和设置

相关的MX_FREERTOS_Init函数

/* 任务属性结构体:*/

typedef struct {

        const char *name; ///< 任务的名字

        uint32_t attr_bits; ///< 操作的标志

        void *cb_mem; ///< 任务的内存地址

        uint32_t cb_size; ///< 当前任务的内存大小

        void *stack_mem; ///< 当前任务的栈内存地址

        uint32_t stack_size; ///< 当前栈内存大小

        osPriority_t priority; ///< 当前任务的优先级

        TZ_ModuleId_t tz_module; ///< TrustZone module identifier

        uint32_t reserved; ///< reserved (must be 0)

} osThreadAttr_t;

2.任务的优先级

typedef enum {

osPriorityNone = 0, ///< No priority (not initialized).

osPriorityIdle = 1, ///< Reserved for Idle thread.

osPriorityLow = 8, ///< Priority: low

osPriorityLow1 = 8+1, ///< Priority: low + 1

osPriorityLow2 = 8+2, ///< Priority: low + 2

osPriorityLow3 = 8+3, ///< Priority: low + 3

osPriorityLow4 = 8+4, ///< Priority: low + 4

osPriorityLow5 = 8+5, ///< Priority: low + 5

osPriorityLow6 = 8+6, ///< Priority: low + 6

osPriorityLow7 = 8+7, ///< Priority: low + 7

osPriorityBelowNormal = 16, ///< Priority: below normal

osPriorityBelowNormal1 = 16+1, ///< Priority: below normal + 1

osPriorityBelowNormal2 = 16+2, ///< Priority: below normal + 2

osPriorityBelowNormal3 = 16+3, ///< Priority: below normal + 3

osPriorityBelowNormal4 = 16+4, ///< Priority: below normal + 4

osPriorityBelowNormal5 = 16+5, ///< Priority: below normal + 5

osPriorityBelowNormal6 = 16+6, ///< Priority: below normal + 6

osPriorityBelowNormal7 = 16+7, ///< Priority: below normal + 7

osPriorityNormal = 24, ///< Priority: normal

osPriorityNormal1 = 24+1, ///< Priority: normal + 1

osPriorityNormal2 = 24+2, ///< Priority: normal + 2

osPriorityNormal3 = 24+3, ///< Priority: normal + 3

osPriorityNormal4 = 24+4, ///< Priority: normal + 4

osPriorityNormal5 = 24+5, ///< Priority: normal + 5

osPriorityNormal6 = 24+6, ///< Priority: normal + 6

osPriorityNormal7 = 24+7, ///< Priority: normal + 7

osPriorityAboveNormal = 32, ///< Priority: above normal

osPriorityAboveNormal1 = 32+1, ///< Priority: above normal + 1

osPriorityAboveNormal2 = 32+2, ///< Priority: above normal + 2

osPriorityAboveNormal3 = 32+3, ///< Priority: above normal + 3

osPriorityAboveNormal4 = 32+4, ///< Priority: above normal + 4

osPriorityAboveNormal5 = 32+5, ///< Priority: above normal + 5

osPriorityAboveNormal6 = 32+6, ///< Priority: above normal + 6

osPriorityAboveNormal7 = 32+7, ///< Priority: above normal + 7

osPriorityHigh = 40, ///< Priority: high

osPriorityHigh1 = 40+1, ///< Priority: high + 1

osPriorityHigh2 = 40+2, ///< Priority: high + 2

osPriorityHigh3 = 40+3, ///< Priority: high + 3

osPriorityHigh4 = 40+4, ///< Priority: high + 4

osPriorityHigh5 = 40+5, ///< Priority: high + 5

osPriorityHigh6 = 40+6, ///< Priority: high + 6

osPriorityHigh7 = 40+7, ///< Priority: high + 7

osPriorityRealtime = 48, ///< Priority: realtime

osPriorityRealtime1 = 48+1, ///< Priority: realtime + 1

osPriorityRealtime2 = 48+2, ///< Priority: realtime + 2

osPriorityRealtime3 = 48+3, ///< Priority: realtime + 3

osPriorityRealtime4 = 48+4, ///< Priority: realtime + 4

osPriorityRealtime5 = 48+5, ///< Priority: realtime + 5

osPriorityRealtime6 = 48+6, ///< Priority: realtime + 6

osPriorityRealtime7 = 48+7, ///< Priority: realtime + 7

osPriorityISR = 56, ///< Reserved for ISR deferred thread.

osPriorityError = -1, ///< System cannot determine priority or illegal priority.

osPriorityReserved = 0x7FFFFFFF ///< Prevents enum down-size compiler optimization.

} osPriority_t;

osThreadId_t osThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr)

void osThreadExit (void)

osStatus_t osDelay (uint32_t ticks)

osStatus_t osThreadDetach (osThreadId_t thread_id);

osStatus_t osThreadJoin (osThreadId_t thread_id)

信号量

        信号量实际上就是一个值,这个值被用来解决临界区问题以及实现进程在多处理器环境下的进程同步。主要分为二值信号量和计数信号量,前者主要用于互斥访问和同步,类似于互斥信号量,不同点是二值信号量不具有优先级继承机制,这也使得其适于同步任务。而后者又称为数值信号量,数值大于1时使用的重点不在其中存储了什么数据而是通过数值去事件计数和资源管理(生产者消费者模型)

对于二值信号量的具体使用:

创建、申请or释放信号(p,v操作)

相关函数:

SemaphoreHandle_t xSemaphoreCreateBinary(void)

BaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore,TickType_t xBlockTime)

BaseType_t xSemaphoreTakeFromISR(SemaphoreHandle_t xSemaphore, BaseType_t* pxHigherPriorityTaskWoken)

BaseType_t xSemaphoreGive(xSemaphore)

BaseType_t xSemaphoreGiveFromISR(SemaphoreHandle_t xSemaphore, BaseType_t* pxHigherPriorityTaskWoken)

对于计数信号量的使用:

事件计数

        事件发生释放信号量数值+1,其它事件获取后数值-1,初始值为0

资源管理

        信号量的数值代表着可用的资源数量,使用资源先获取,数量-1,用完之后再释放,数量+1, 初值根据资源的数量去决定。

相关函数

SemaphoreHandle_t xSemaphoreCreateCounting(UBaseType_t uxMaxCount, UBaseType_t uxInitialCount)

信号量的释放与获取与二值信号量相同:

BaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore,TickType_t xBlockTime)

BaseType_t xSemaphoreTakeFromISR(SemaphoreHandle_t xSemaphore, BaseType_t* pxHigherPriorityTaskWoken)

BaseType_t xSemaphoreGive(xSemaphore)

BaseType_t xSemaphoreGiveFromISR(SemaphoreHandle_t xSemaphore, BaseType_t* pxHigherPriorityTaskWoken)

uxSemaphoreGetCount(信号量句柄 )

对于对互斥型信号量的使用:

        其是一种特殊的二值信号量,特点是优先级继承机制,作用是保护临界资源(类似于互斥锁)

相关函数

SemaphoreHandle_t xSemaphoreCreateMutex(void)

信号量的释放与获取与二值信号量相同:

BaseType_t xSemaphoreTake(SemaphoreHandle_t xSemaphore,TickType_t xBlockTime)

BaseType_t xSemaphoreTakeFromISR(SemaphoreHandle_t xSemaphore, BaseType_t* pxHigherPriorityTaskWoken)

BaseType_t xSemaphoreGive(xSemaphore)

BaseType_t xSemaphoreGiveFromISR(SemaphoreHandle_t xSemaphore, BaseType_t* pxHigherPriorityTaskWoken)

事件标志组

        为了实现多个任务或事件进行同步。

相关函数:

osEventFlagsId_t osEventFlagsNew(const osEventFlagsAttr_t *attr);

uint32_t osEventFlagsSet(osEventFlagsId_t ef_id, uint32_t flags);

uint32_t osEventFlagsWait(osEventFlagsId_t ef_id, uint32_t flags,\ uint32_t options, uint32_t timeout);

队列:

用于任务到任务或者任务到中断再到任务的通信数据结构

相关函数:

typedef struct {

        const char *name; ///< 消息队列的名称

        uint32_t attr_bits; ///< 属性位

        void *cb_mem; ///< 控制块(Control Block)的内存指针

        uint32_t cb_size; ///< 控制块的大小

        void *mq_mem; ///< 数据存储的内存指针

        uint32_t mq_size; ///< 数据存储的大小

} osMessageQueueAttr_t;

osMessageQueueId_t osMessageQueueNew (uint32_t msg_count, uint32_t msg_size,\ const osMessageQueueAttr_t *attr);

osStatus_t osMessageQueuePut (osMessageQueueId_t mq_id, const void *msg_ptr,\ uint8_t msg_prio, uint32_t timeout);

osStatus_t osMessageQueueGet (osMessageQueueId_t mq_id, void *msg_ptr,\ uint8_t *msg_prio, uint32_t timeout);

FREERTOS软件定时器:

可以分为一次性的和周期的即某时间点进行函数功能调用和周期执行某个函数的功能

相关函数:

osTimerId_t osTimerNew (osTimerFunc_t func, osTimerType_t type, void *argument, const osTimerAttr_t *attr)

osStatus_t osTimerStart (osTimerId_t timer_id, uint32_t ticks)

osStatus_t osTimerStop (osTimerId_t timer_id)

osTimerDelete (osTimerId_t timer_id)

注:修改定时器任务的优先级要尽量高一点

        修改任务的优先级要尽量的低一点

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/7744.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【精选】基于数据挖掘的招聘信息分析与市场需求预测系统 职位分析、求职者趋势分析 职位匹配、人才趋势、市场需求分析数据挖掘技术 职位需求分析、人才市场趋势预测

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

Go中的三种锁

Go 中的锁 Go 语言提供了多种锁机制&#xff0c;用于在并发编程中保护共享资源。常见的锁包括 互斥锁、读写锁 和 sync.Map 的安全锁。 1. 互斥锁&#xff08;Mutex&#xff09; 原理 互斥锁&#xff08;sync.Mutex&#xff09;是一种最简单的锁机制&#xff0c;用于保护共…

2025美赛数学建模C题:奥运金牌榜,完整论文代码模型目前已经更新

2025美赛数学建模C题&#xff1a;奥运金牌榜&#xff0c;完整论文代码模型目前已经更新&#xff0c;获取见文末名片

【数据结构】深入解析:构建父子节点树形数据结构并返回前端

树形数据结构列表 一、前言二、测试数据生成三、树形代码3.1、获取根节点3.2、遍历根节点&#xff0c;递归获取所有子节点3.3、排序3.4、完整代码 一、前言 返回前端VO对象中&#xff0c;有列情况列表展示需要带树形结构&#xff0c;例如基于RBAC权限模型中的菜单返回&#xf…

Docker快速部署高效照片管理系统LibrePhotos搭建私有云相册

文章目录 前言1.关于LibrePhotos2.本地部署LibrePhotos3.LibrePhotos简单使用4. 安装内网穿透5.配置LibrePhotos公网地址6. 配置固定公网地址 前言 想象一下这样的场景&#xff1a;你有一大堆珍贵的回忆照片&#xff0c;但又不想使用各种网盘来管理。怎么办&#xff1f;别担心…

【开源免费】基于Vue和SpringBoot的医院资源管理系统(附论文)

本文项目编号 T 161 &#xff0c;文末自助获取源码 \color{red}{T161&#xff0c;文末自助获取源码} T161&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…

被占用的电脑文件推沟里

在使用电脑的过程中&#xff0c;你是否遇到过这种情况&#xff1a;想删除、移动或重命名一个文件&#xff0c;结果系统无情地告诉你——“文件被占用&#xff0c;无法操作&#xff01;”这时候&#xff0c;IObit Unlocker 就该闪亮登场了&#xff01;这款免费的文件解锁工具&am…

Coze插件开发之基于已有服务创建并上架到扣子商店

Coze插件开发之基于已有服务创建并上架到扣子商店 在应用开发中&#xff0c;需要调用各种插件&#xff0c;以快速进行开发。但有时需要调用的插件在扣子商店里没有&#xff0c;那怎么办呢&#xff1f; 今天就来带大家快速基于已有服务创建一个新的插件 简单来讲&#xff0c;就是…

微信小程序-点餐(美食屋)02开发实践

目录 概要 整体架构流程 &#xff08;一&#xff09;用户注册与登录 &#xff08;二&#xff09;菜品浏览与点餐 &#xff08;三&#xff09;订单管理 &#xff08;四&#xff09;后台管理 部分代码展示 1.index.wxml 2.list.wxml 3.checkout.wxml 4.detail.wxml 小结优点 概要…

[Dialog屏幕开发] 屏幕绘制(下拉菜单)

阅读该篇文章之前&#xff0c;可先阅读下述资料 [Dialog屏幕开发] Table Control 列数据操作https://blog.csdn.net/Hudas/article/details/145343731?spm1001.2014.3001.5501上篇文章我们的屏幕已实现了如下功能 我们已经设置了按钮对Table Control 列的数据进行了操作 接下…

类与对象(下)

再谈构造函数 构造函数体赋值 在创建对象时&#xff0c;编译器通过调用构造函数&#xff0c;给对象中各个成员变量一个合适的初始值 class Date { public: Date(int year, int month, int day){_year year;_month month;_day day;} private: int _year; int _month; int _d…

【机器学习】深入探索SVM:支持向量机的原理与应用

目录 &#x1f354; SVM引入 1.1什么是SVM? 1.2支持向量机分类 1.3 线性可分、线性和非线性的区分 &#x1f354; 小结 学习目标 知道SVM的概念 &#x1f354; SVM引入 1.1什么是SVM? 看一个故事&#xff0c;故事是这样子的&#xff1a; 在很久以前的情人节&#xf…

Dev-C++分辨率低-解决办法

目录 【工具】Dev-C分辨率低-解决办法问题背景完整操作指南第一步&#xff1a;打开属性设置 【工具】Dev-C分辨率低-解决办法 问题背景 Dev-C因版本老旧&#xff08;长期未更新&#xff09;&#xff0c;在高分辨率显示器上存在界面模糊问题。通过修改Windows兼容性设置可优化…

[VSCode] vscode下载安装及安装中文插件详解(附下载链接)

VSCode 是一款由微软开发且跨平台的免费源代码编辑器&#xff1b;该软件支持语法高亮、代码自动补全、代码重构、查看定义功能&#xff0c;并且内置了命令行工具和Git版本控制系统。 下载链接&#xff1a;https://pan.quark.cn/s/3a90aef4b645 提取码&#xff1a;NFy5 通过上面…

javascript-es6 (一)

作用域&#xff08;scope&#xff09; 规定了变量能够被访问的“范围”&#xff0c;离开了这个“范围”变量便不能被访问 局部作用域 函数作用域&#xff1a; 在函数内部声明的变量只能在函数内部被访问&#xff0c;外部无法直接访问 function getSum(){ //函数内部是函数作用…

c语言中的数组(上)

数组的概念 数组是⼀组相同类型元素的集合&#xff1b; 数组中存放的是1个或者多个数据&#xff0c;但是数组元素个数不能为0。 数组中存放的多个数据&#xff0c;类型是相同的。 数组分为⼀维数组和多维数组&#xff0c;多维数组⼀般⽐较多⻅的是⼆维数组。 数组创建 在C语言…

C#,入门教程(05)——Visual Studio 2022源程序(源代码)自动排版的功能动画图示

上一篇&#xff1a; C#&#xff0c;入门教程(04)——Visual Studio 2022 数据编程实例&#xff1a;随机数与组合https://blog.csdn.net/beijinghorn/article/details/123533838https://blog.csdn.net/beijinghorn/article/details/123533838 新来的徒弟们交上来的C#代码&#…

用Python和PyQt5打造一个股票涨幅统计工具

在当今的金融市场中&#xff0c;股票数据的实时获取和分析是投资者和金融从业者的核心需求之一。无论是个人投资者还是专业机构&#xff0c;都需要一个高效的工具来帮助他们快速获取股票数据并进行分析。本文将带你一步步用Python和PyQt5打造一个股票涨幅统计工具&#xff0c;不…

为什么IDEA提示不推荐@Autowired❓️如果使用@Resource呢❓️

前言 在使用 Spring 框架时&#xff0c;依赖注入&#xff08;DI&#xff09;是一个非常重要的概念。通过注解&#xff0c;我们可以方便地将类的实例注入到其他类中&#xff0c;提升开发效率。Autowired又是被大家最为熟知的方式&#xff0c;但很多开发者在使用 IntelliJ IDEA …

C# OpenCV机器视觉:利用CNN实现快速模板匹配

在一个阳光灿烂的周末&#xff0c;阿强正瘫在沙发上&#xff0c;百无聊赖地换着电视频道。突然&#xff0c;一则新闻吸引了他的注意&#xff1a;某博物馆里一幅珍贵的古画离奇失踪&#xff0c;警方怀疑是被一伙狡猾的盗贼偷走了&#xff0c;现场只留下一些模糊不清的监控画面&a…