改进粒子群算法优化BP神经网络---回归+分类两种案例

今天采用改进的粒子群算法(LPSO)优化算法优化BP神经网络。本文选用的LPSO算法是之前作者写过的一篇文章:基于改进莱维飞行和混沌映射(10种混沌映射随意切换)的粒子群优化算法,附matlab代码

文章一次性讲解两种案例,回归分类。回归案例中,作者选用了一个经典的股票数据。分类案例中,选用的是公用的UCI数据集。

BP神经网络初始的权值阈值都是随机生成的,因此不一定是最佳的。采用智能算法优化BP神经网络的权值阈值,使得输入与输出有更加完美的映射关系,以此来提升BP神经网络模型的精度。本文采用LPSO算法对BP神经网络的权值阈值进行优化,并应用于实际的回归和分类案例中。

01 股票预测案例

案例虽然介绍的是股票预测,但是LPSO-BP预测模型是通用的,大家根据自己的数据直接替换即可。数据替换十分简单,代码注释中都写的非常清楚了。

股票数据特征有:开盘价,盘中最高价,盘中最低价,收盘价等。预测值为股票价格。股票数据整理代码已写好,想换成自己数据的童鞋不需要理解此代码,替换数据即可。下面直接上标准BP的预测结果和LPSO-BP的预测结果。

标准BP模型预测结果

6fa1b3ebafadb7a170810c6e03c3d895.png

可以看到标准BP神经网络的预测效果不是很理想,无法跟踪真实值偏差较大

LPSO-BP预测结果

可以看到LPSO-BP神经网络的预测值可以紧密跟随真实值,效果很好。

e503e6e1248bea10c3cd534fb48745aa.png

将真实值,BP预测值和LPSO-BP预测值放在一起,效果更加明显。99ac421b072fe2ccf4e81d5e133f2e10.png

接下来是一个LPSO优化前后的BP神经网络误差对比图。

9a394682607be3c2c7e8388e3c43ead1.png

LPSO-BP的迭代曲线,以预测值和真实值的MSE为目标函数。

abc69dabc42ef04f3a7b641c1df133dd.png

LPSO-BP预测模型的评价:可以看到,LPSO-BP方法在股票预测案例中可以很好地进行股票价格预测。

02 分类案例

接下来是LPSO-BP的分类案例,采用的数据是UCI数据集中的Balancescale.mat数据,该数据一共分为三类。接下来看结果。

标准BP模型分类结果

混淆矩阵结果图:

简单说一下这个图该怎么理解。请大家横着看,每行的数据加起来是100%,每行的数据个数加起来就是测试集中第一类数据的真实个数。以第一行为例,测试集中一共有12个数据是属于第一类的,而12个数据中,有8个预测正确,有1个预测成了第2类,3个预测成了第三类。其他行均这样理解。

d2415a67adf17ab9082f2c41cf426f80.png

下面这个图是另一种结果展现方式,在一些论文中会用这种方式展示结果。

245bb09052c5d026ed7185f1e664db60.png

LPSO-BP分类结果:

44cf9f279aba97781481e7ba9bd33835.png

9718d0ae9c0e49f7340a21a99fcac9c1.png

242ad698e408893c39a6b19f0a2c34f7.png

03 代码展示

%% 初始化
clear
close all
clc
warning off
addpath(genpath(pwd));
% rng(0)
load Balancescale.mat 
data = Balancescale;
data=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
input=data(:,2:end);
output1 =data(:,1);
for i=1:size(data,1)switch output1(i)case 1output(i,1)=1;case 2output(i,2)=1;case 3output(i,3)=1;case 4output(i,4)=1;case 5output(i,5)=1;case 6output(i,6)=1;case 7output(i,7)=1;end
end
%% 划分训练集和测试集
m=fix(size(data,1)*0.7);    %训练的样本数目
%训练集
input_train=input(1:m,:)';
output_train=output(1:m,:)';
% 测试集
input_test=input(m+1:end,:)';
output_test=output(m+1:end,:)';%% 数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
inputn_test=mapminmax('apply',input_test,inputps);
dam = fix(size(inputn,2)*0.3);%选30%的训练集作为验证集
idx = randperm(size(inputn,2),dam);
XValidation = inputn(:,idx);
inputn(:,idx) = [];
YValidation = output_train(:,idx);
output_train(:,idx) = [];%% 获取输入层节点、输出层节点个数
inputnum=size(input_train,1);
outputnum=size(output_train,1);
disp('/')
disp('神经网络结构...')
disp(['输入层的节点数为:',num2str(inputnum)])
disp(['输出层的节点数为:',num2str(outputnum)])
disp(' ')
disp('隐含层节点的确定过程...')%确定隐含层节点个数
%采用经验公式hiddennum=sqrt(m+n)+a,m为输入层节点个数,n为输出层节点个数,a一般取为1-10之间的整数
acc = 0;
for hiddennum=fix(sqrt(inputnum+outputnum))+1:fix(sqrt(inputnum+outputnum))+10net0=newff(inputn,output_train,hiddennum);% 网络参数net0.trainParam.epochs=1000;            % 训练次数,这里设置为1000次net0.trainParam.lr=0.01;                % 学习速率,这里设置为0.01net0.trainParam.goal=0.0001;           % 训练目标最小误差,这里设置为0.0001net0.trainParam.show=25;                % 显示频率,这里设置为每训练25次显示一次net0.trainParam.mc=0.001;                % 动量因子net0.trainParam.min_grad=1e-8;          % 最小性能梯度net0.trainParam.max_fail=6;             % 最高失败次数net0.trainParam.showWindow = false;net0.trainParam.showCommandLine = false; % 网络训练[net0,tr]=train(net0,inputn,output_train);an0=sim(net0,XValidation);  %验证集的仿真结果predict_label=zeros(1,size(an0,2));for i=1:size(an0,2)predict_label(i)=find(an0(:,i)==max(an0(:,i)));endoutputt=zeros(1,size(YValidation,2));for i=1:size(YValidation,2)outputt(i)=find(YValidation(:,i)==max(YValidation(:,i)));endaccuracy=sum(outputt==predict_label)/length(outputt);   %计算预测的确率disp(['隐含层节点数为',num2str(hiddennum),'时,验证集的准确率为:',num2str(accuracy)])%更新最佳的隐含层节点if acc<accuracyacc=accuracy;hiddennum_best=hiddennum;end
end
disp(['最佳的隐含层节点数为:',num2str(hiddennum_best),',验证集相应的训练集的准确率为:',num2str(acc)])%% 构建最佳隐含层节点的BP神经网络
disp(' ')
disp('标准的BP神经网络:')
net0=newff(inputn,output_train,hiddennum_best,{'tansig','purelin'},'trainlm');% 建立模型
%网络参数配置
net0.trainParam.epochs=1000;         % 训练次数,这里设置为1000次
net0.trainParam.lr=0.01;                   % 学习速率,这里设置为0.01
net0.trainParam.goal=0.00001;                    % 训练目标最小误差,这里设置为0.0001
net0.trainParam.show=25;                % 显示频率,这里设置为每训练25次显示一次
net0.trainParam.mc=0.01;                 % 动量因子
net0.trainParam.min_grad=1e-6;       % 最小性能梯度
net0.trainParam.max_fail=6;               % 最高失败次数
% net0.trainParam.showWindow = false;
% net0.trainParam.showCommandLine = false;            %隐藏仿真界面
%开始训练
net0=train(net0,inputn,output_train);%预测
an0=sim(net0,inputn_test); %用训练好的模型进行仿真
predict_label=zeros(1,size(an0,2));for i=1:size(an0,2)predict_label(i)=find(an0(:,i)==max(an0(:,i)));endoutputt=zeros(1,size(output_test,2));for i=1:size(output_test,2)outputt(i)=find(output_test(:,i)==max(output_test(:,i)));endaccuracy=sum(outputt==predict_label)/length(outputt);   %计算预测的确率  disp(['准确率为:',num2str(accuracy)])
%% 标准BP神经网络作图
% 画方框图
figure
confMat = confusionmat(outputt,predict_label);  %output_test是真实值标签
zjyanseplotConfMat(confMat.');  
xlabel('Predicted label')
ylabel('Real label')
% 作图
figure
scatter(1:length(predict_label),predict_label,'r*')
hold on
scatter(1:length(predict_label),outputt,'g^')
legend('预测类别','真实类别','NorthWest')
title({'BP神经网络的预测效果',['测试集正确率 = ',num2str(accuracy*100),' %']})
xlabel('预测样本编号')
ylabel('分类结果')
box on
set(gca,'fontsize',12)
%% LPSO优化算法寻最优权值阈值
disp(' ')
disp('LPSO优化BP神经网络:')net=newff(inputn,output_train,hiddennum_best,{'tansig','purelin'},'trainlm');% 建立模型%网络参数配置
net.trainParam.epochs=1000;         % 训练次数,这里设置为1000次
net.trainParam.lr=0.0001;                   % 学习速率,这里设置为0.01
net.trainParam.goal=0.000001;                    % 训练目标最小误差,这里设置为0.0001
net.trainParam.show=25;                % 显示频率,这里设置为每训练25次显示一次
net.trainParam.mc=0.01;                 % 动量因子
net.trainParam.min_grad=1e-6;       % 最小性能梯度
net.trainParam.max_fail=6;               % 最高失败次数
%% 初始化LPSO参数
popsize=20;   %初始种群规模
maxgen=100;   %最大进化代数
lb = -1;  %神经网络权值阈值的上下限
ub = 1;
numm = 2; %混沌系数
dim=inputnum*hiddennum_best+hiddennum_best+hiddennum_best*outputnum+outputnum;    %自变量个数
[Best_score,Best_pos,LPSO_curve]=LPSOforBP(numm,popsize,maxgen,lb,ub,dim,inputnum,hiddennum_best,outputnum,net,inputn,output_train,inputn_test,output_test);

代码中注释非常详细,有对神经网络构建的注释,有对LPSO-BP代码的注释,简单易懂。

代码附带UCI常用的数据集及其解释。大家可以自行尝试别的数据进行分类。附带LPSO在CEC2005函数的测试代码。

一次性获取两种案例代码。完整代码获取方式,后台回复关键词。

关键词 :

LPSOBP

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/78811.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Maven出现报错 ; Unable to import maven project: See logs for details错误的多种解决方法

问题现象; IDEA版本&#xff1a; Maven 版本 &#xff1a; 3.3.9 0.检查 maven 的设置 &#xff1a;F:\softeware\maven\apache-maven-3.9.3\conf 检查setting.xml 配置 本地仓库<localRepository>F:\softeware\maven\local\repository</localRepository>镜像…

xLua学习

xLua教程&#xff1a;https://github.com/Tencent/xLua/blob/master/Assets/XLua/Doc/XLua%E6%95%99%E7%A8%8B.md xLua配置&#xff1a;https://github.com/Tencent/xLua/blob/master/Assets/XLua/Doc/configure.md FAQ&#xff1a;https://github.com/Tencent/xLua/blob/maste…

信号平滑或移动平均滤波研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【数据结构OJ题】消失的数字

原题链接&#xff1a;https://leetcode.cn/problems/missing-number-lcci/ 目录 1. 题目描述 2. 思路分析 3.代码实现 1. 题目描述 2. 思路分析 方法一&#xff1a;排序遍历&#xff08;下一个数不等于上一个数1&#xff0c;这个下一个数就是消失的数字&#xff09;。 时…

K8s中的核心技术Helm

1.helm的引入 &#xff08;1&#xff09;编写yaml文件 &#xff08;2&#xff09;编写deployment文件 &#xff08;3&#xff09;编写service文件 &#xff08;4&#xff09;编写Ingress文件 2.helm的引入解决的问题&#xff1f; &#xff08;1&#xff09;使用helm可以把…

Zookeeper笔记

为什么要使用Zookeeper dubbo需要一个注册中心&#xff0c;而Zookeeper是我们在使用Dubbo是官方推荐的注册中心 Zookeeper介绍 Zookeeper的集群机制 Zookeeper是为了其他分布式程序提供服务的&#xff0c;所以不能随便就挂了。Zookeeper的集群机制采取的是半数存活机制。也…

JVM问题

1. jvm运行时区域划分及每个区域的作用 堆、方法区&#xff08;元空间&#xff09;、虚拟机栈、本地方法栈、程序计数器 2. 堆内存分配策略&#xff1a;新生代&#xff0c;老年代&#xff0c;gc时机 • 对象优先分配在Eden区&#xff0c;如果Eden区没有足够的空间进行分配时&am…

三种方式创建对象的几种方式及new实例化时做了什么?

创建对象的几种方式 利用对象字面量创建对象 const obj {}2.利用 new Object创建对象 const obj new Object()3.使用 构造函数实例化对象 function Fn(name) {this.name name} const obj new Fn(张三) console.log(obj.name); //张三为什么要用构造函数的形式&#xff1…

STM32--综述

文章目录 前言STM32简介STM32F103C8T6系统结构Keil软件安装注意事项新建工程操作流程 前言 本专栏将学习B站江协科技的STM32入门教程&#xff0c;通过自身理解和对老师的总结所写的博客专栏。 STM32简介 STM32是意法半导体&#xff08;STMicroelectronics&#xff09;公司推…

实施高级存储功能

实施高级存储功能 使用Stratis管理分层存储 Stratis 适用于Linux的本地存储管理解决方案。旨在提供更便利的方式执行存储的初始配置&#xff0c;对存储配置进行修改&#xff0c;并使用高级存储功能。 Stratis以管理物理存储设备池的服务形式运行&#xff0c;并透明地为新创…

Popconfirm气泡确认框(antd-design组件库)简单使用

1.Popconfirm气泡确认框 点击元素&#xff0c;弹出气泡式的确认框。 2.何时使用 目标元素的操作需要用户进一步的确认时&#xff0c;在目标元素附近弹出浮层提示&#xff0c;询问用户。 和 confirm 弹出的全屏居中模态对话框相比&#xff0c;交互形式更轻量。 组件代码来自&…

kubernetes 集群搭建(二进制方式)

使用二进制方式搭建Kubernetes集群&#xff0c;可以更加灵活、自由地定制和配置Kubernetes。同时&#xff0c;它还可以实现更高的性能和更小的资源占用。 对于我这个初学者来说&#xff1a; 更加直观地看到Kubernetes的各个组件&#xff0c;了解它们之间的关系和作用。在搭建…

火车头标题伪原创【php源码】

大家好&#xff0c;给大家分享一下python怎么读取文件中的数据&#xff0c;很多人还不知道这一点。下面详细解释一下。现在让我们来看看&#xff01; 火车头采集ai伪原创插件截图&#xff1a; python是一门非常火爆且相对易学的编程语言&#xff0c;应用在各种场景。许多人想学…

GO学习之 网络通信(Net/Http)

GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 10、 文章目录 GO系列前言一、H…

微信小程序tab加列表demo

一、效果 代码复制即可使用&#xff0c;记得把图标替换成个人工程项目图片。 微信小程序开发经常会遇到各种各样的页面组合&#xff0c;本demo为list列表与tab组合&#xff0c;代码如下&#xff1a; 二、json代码 {"usingComponents": {},"navigationStyle&q…

在java中操作redis_Data

1.引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency> 2.配置Redis数据源 redis:host: ${sky.redis.host}port: ${sky.redis.port}password: ${sk…

基于Windows手动编译openssl和直接安装openssl

零、环境 win10-64位 VS2019 一、手动编译 前言&#xff1a;对于一般的开发人员而言&#xff0c;在 openssl 上下载已经编译好的 openssl 库&#xff0c;然后直接拿去用即可&#xff0c;&#xff0c;不用手动编译&#xff0c;{见下文直接安装}。。。对于一些开发人员&#…

【C#学习笔记】装箱和拆箱

文章目录 装箱和拆箱性能消耗装箱拆箱 比较var&#xff0c;object&#xff0c;dynamic&#xff0c;\<T\>varobject\<T\> 泛型dynamic 装箱和拆箱 在讲引用类型object的时候&#xff0c;我们说它是万能的&#xff0c;却没说它万能在哪里。 除了object为每一种变量…

Huggingface使用

文章目录 前置安装Huggingface介绍NLP模块分类transformer流程模块使用详细讲解tokennizermodeldatasetsTrainer Huggingface使用网页直接体验API调用本地调用(pipline)本地调用&#xff08;非pipline&#xff09; 前置安装 anaconda安装 使用conda创建一个新环境并安装pytorc…

针对高可靠性和高性能优化的1200V碳化硅沟道MOSFET

目录 标题&#xff1a;1200V SiC Trench-MOSFET Optimized for High Reliability and High Performance摘要信息解释研究了什么文章创新点文章的研究方法文章的结论 标题&#xff1a;1200V SiC Trench-MOSFET Optimized for High Reliability and High Performance 摘要 本文详…