2023 电赛 E 题 激光笔识别有误--使用K210/Openmv/树莓派/Jetson nano实现激光笔在黑色区域的目标检测

1. 引言

1.1 激光笔在黑色区域目标检测的背景介绍

在许多应用领域,如机器人导航、智能家居和自动驾驶等,目标检测技术的需求日益增加。本博客将聚焦于使用K210芯片实现激光笔在黑色区域的目标检测。

激光笔在黑色区域目标检测是一个有趣且具有挑战性的问题。我们将通过使用K210芯片和相关算法,能够准确地检测出激光笔在黑色区域的位置和姿态,以便后续应用。

1.2 K210芯片的概述和优势

K210芯片是由中国公司苏州芯原科技(Sipeed)开发的一款高性能、低功耗的人工智能边缘计算芯片。它采用RISC-V架构,具备强大的计算能力和丰富的外设接口,特别适合用于嵌入式人工智能应用。

K210芯片的主要优势包括:

  • 高性能:K210芯片搭载了双核64位处理器和一颗专门的神经网络加速器,可以实现快速而高效的神经网络推断。
  • 低功耗:K210芯片采用先进的低功耗设计,能够在边缘设备上实现节能运行和长时间使用。
  • 丰富的外设接口:K210芯片具备多种外设接口,如摄像头和显示器接口,方便与其他硬件设备进行连接和交互。
  • 开源优势:K210芯片使用RISC-V架构,而且软硬件都有开源社区支持,提供了更灵活、可定制的开发环境。

2. 硬件准备

2.1 K210芯片介绍

K210芯片是一款先进的人工智能边缘计算芯片,具备强大的计算能力和丰富的外设接口。为了实现激光笔在黑色区域的目标检测,我们需要准备以下硬件设备:

  • K210开发板:选择一款基于K210芯片的开发板,如Sipeed Maixduino等。
  • 摄像头模块:选择一款兼容K210开发板的摄像头模块,常用的有OV2640和GC0328等。
  • 激光笔:准备一支激光笔,用于在黑色区域绘制目标标记。

2.2 连接摄像头和激光笔

在进行目标检测之前,我们需要将摄像头和激光笔连接到K210开发板上。

首先,将摄像头模块插入到K210开发板的摄像头接口上。确保插入牢固,并注意摄像头的方向。

接下来,将激光笔的电源线与K210开发板的电源接口相连。根据激光笔的规格和开发板的接口类型,选择合适的连接方式,如直插或使用杜邦线连接。

完成连接后,确保所有接口插头都插入正确,并且牢固稳定。这样,我们就完成了摄像头和激光笔与K210开发板的硬件连接。

在进行下一步之前,建议对连接进行检查,确保没有松动或错误连接的情况。

3. 软件准备

3.1 K210开发环境搭建

K210 技术文档

为了开始进行激光笔在黑色区域的目标检测,我们需要搭建K210的开发环境。以下是一些主要的步骤和要求:

官方安装方法

  • 安装MaixPy IDE:MaixPy IDE是一个适用于K210芯片的集成开发环境。您可以从官方网站上下载并安装MaixPy IDE。请确保选择适用于您的操作系统的版本,并按照安装向导进行安装。

  • 安装kflash_gui:kflash_gui是一个用于将固件烧录到K210芯片的图形化工具。您可以在GitHub上找到kflash_gui的源代码,并按照说明进行安装。

  • 固件下载:K210芯片使用的固件是MicroPython的一个分支,称为MaixPy固件。您可以从官方网站或GitHub仓库下载MaixPy固件。请根据您的K210开发板型号和硬件配置选择正确的固件版本。固件下载地址

  • 固件烧录:使用kflash_gui工具,将下载好的MaixPy固件烧录到K210芯片上。连接K210开发板到计算机上,并按照kflash_gui的指南选择正确的端口和固件文件,然后开始烧录过程。

  • 连接硬件设备:在进行激光笔目标检测之前,需要连接适当的硬件设备,例如摄像头或传感器等。根据您的具体需求和硬件配置,确保正确连接硬件设备到K210开发板。

3.2 安装相关Python库

在进行激光笔目标检测之前,我们需要安装一些必要的Python库,安装python用于实现将图片进行标注:

labelimg

pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install lxml -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install PyQt5_tools -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install PyQt5_tools -i https://pypi.tuna.tsinghua.edu.cn/simple

安装结束后,在cmd中输入labelimg,出现弹框即为labelimg页面 

 图1  labelimg 初始界面

 图2  labelimg 标注界面 

4. 模型训练与优化

4.1 数据采集和准备

在开始实现激光笔目标检测算法之前,我们需要进行数据采集和准备。以下是一些主要的步骤:

  • 采集黑色区域图片:使用摄像头模块拍摄一系列黑色区域的图片。确保图片中有激光笔绘制的目标标记,并控制光线和背景条件的一致性。

图3 拍摄的激光笔黑色区域 

  • 标注目标位置:对采集到的图片进行目标位置的标注。可以使用图像标注工具(如LabelImg)来标注目标的边界框,并生成对应的标注文件。

  • 划分训练集和测试集:将采集到的数据分为训练集和测试集。通常将数据的80%用于训练,20%用于测试。

  • 数据增强:对训练集进行数据增强操作,以扩充训练数据的多样性。例如,可以进行随机旋转、翻转、缩放和平移等操作。

完成上述步骤后,您就准备好了用于训练和测试激光笔目标检测算法的数据集。

注意:在对数据集进行采集时,采集的数据要与使用场地的图片一致。比如:该模型要在白天使用,那么就在白天拍摄图片;该模型要在晚上使用,那么就在晚上拍摄图片;该模型要在球场使用,那么就在球场拍摄图片。对于收集的数据量,一般来说,对于一个类别,那就在500张左右。

注意:在进行收集图像时,图像的尺寸大小最好为[640,640] ,尺寸太小或太大都会影响识别的准确率。

4.2 模型选择

为了实现激光笔目标检测,我们需要选择合适的目标检测模型,并进行训练。

对于K210来说,不同的型号使用的最佳模型不同,在官方的模型,使用的模型有yolov2、yolov3、

yolov4、yolov7、yolovx。这些模型,对于一般的K210,建议使用yolov3模型进行训练。当然,模型越高,训练的效果越好,但是要看自己的开发板能否实现。

4.3 模型训练

可以在线训练和本地训练两种方法。

K210:

Maixhub 模型训练 - Sipeed Wiki

K210 在线训练 官网

本地模型训练 for Linux - Sipeed Wiki

本地训练 for windows - Sipeed Wiki

Openmv:

OpenVINO应用案例:部署YOLO模型到边缘计算摄像头_将算法部署到摄像机中_同学来啦的博客-CSDN博客

https://github.com/SingTown/Traffic-Sign-FOMO/blob/main/README-CN.md
 

树莓派:

树莓派4B训练yolo模型

Jetson nano:

https://github.com/SingTown/Traffic-Sign-FOMO/blob/main/README-CN.md

选择模型后,我们可以使用已准备好的数据集对模型进行训练。通常,训练目标检测模型的步骤如下:

  1. 加载数据集:将准备好的数据集导入到模型中,包括训练集和测试集。

  2. 模型初始化:根据选择的模型架构,初始化一个空的目标检测模型。

  3. 优化器选择:选择合适的优化器,如Adam或SGD,用于优化模型参数。

  4. 模型训练:使用训练集数据对模型进行训练,并在每个训练周期(epoch)结束后,使用测试集数据评估模型性能。

  5. 模型保存:在训练过程中,选择合适的检查点(checkpoint)来保存训练过程中的模型参数。

注意:在使用训练时,一般不用修改参数,需要修改的参数为训练轮数、识别类别、GPU是否使用、模型文件、输入图像大小。

完成上述步骤后,一个激光笔目标检测模型就可以使用了。

4.4 模型预测

在模型训练好后,就可以使用训练好的模型进行检测,识别激光笔。

 K210 识别代码

from fpioa_manager import * 
import sensor,image,lcd,time  import KPU as kpu
task = kpu.load(0x300000)   # 加载模型lcd.init(freq=15000000) sensor.reset()  
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA) sensor.set_windowing((224, 224))
sensor.set_brightness(2)  #设置亮度(范围为[-2~2])
#sensor.set_contrast(-1)  #设置对比度(范围为[-2,+2])
#sensor.set_auto_gain(1,2) #设置摄像自动增益模式
sensor.run(1)  #图像捕捉控制(1:开始捕捉;0:关闭捕捉)clock = time.clock() #获取clock对象
classes = ['light']anchor = (1, 1.2, 2, 3, 4, 3, 6, 4, 5, 6.5)
a = kpu.init_yolo2(task, 0.17, 0.3, 5, anchor) #为yolov2网络模型传入初始化参数
#(task, 0.17, 0.3, 5, anchor)分别为 kpu网络对象、概率阙值、box_iou门限、锚点数、锚点参数与模型参数一致while(True):clock.tick() #记录开始时间(ms)img = sensor.snapshot()    #使用摄像头拍摄一张照片code = kpu.run_yolo2(task, img)  #task为 kpu_load 返回的 kpu_net 对象#img为从sensor 采集到的图像#run_yolo2返回的值为kpu_yolo2_find 的列表if code:for i in code:a=img.draw_rectangle(i.rect()) #在图像上绘制一个矩形。此处为作为元组传递回坐标框出矩形#传回的是检测到的图像的四个坐标a = lcd.display(img) #在液晶屏上显示被框框框起来的imageprint("物体是:",classes[i.classid()]) # 打印出识别的类别print("概率为:",100.00*i.value()) # 打印出置信度else:a = lcd.display(img) # 如果没有识别出物体,则继续呈现图像a = kpu.deinit(task) #反初始化。kpu_load 返回 kpu_net 对象

5. 最终效果 

 

图4 模型识别结果

 注意:模型识别的准确度与图片标注的质量和图片数量有关。

硬性的标准其实限制不了无限可能的我们,所以啊!少年们加油吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/80026.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

20天学会rust(一)和rust say hi

关注我,学习Rust不迷路 工欲善其事,必先利其器。第一节我们先来配置rust需要的环境和安装趁手的工具,然后写一个简单的小程序。 安装 Rust环境 Rust 官方有提供一个叫做 rustup 的工具,专门用于 rust 版本的管理,网…

Linux——设备树

目录 一、Linux 设备树的由来 二、Linux设备树的目的 1.平台识别 2.实时配置 3.设备植入 三、Linux 设备树的使用 1.基本数据格式 2.设备树实例解析 四、使用设备树的LED 驱动 五、习题 一、Linux 设备树的由来 在 Linux 内核源码的ARM 体系结构引入设备树之前&#x…

Android学习之路(1) 文本设置

Android学习之路(1) 文本 一、设置文本内容 设置文本内容的两种方式&#xff1a; 一种是在XML文件中通过属性android:text设置文本代码如下 <TextViewandroid:id"id/tv_hello"android:layout_width"wrap_content"android:layout_height"wrap_c…

蓝桥杯上岸每日N题 第七期(小猫爬山)!!!

蓝桥杯上岸每日N题 第七期(小猫爬山)&#xff01;&#xff01;&#xff01; 同步收录 &#x1f447; 蓝桥杯上岸必背&#xff01;&#xff01;&#xff01;(第四期DFS) 大家好 我是寸铁&#x1f4aa; 冲刺蓝桥杯省一模板大全来啦 &#x1f525; 蓝桥杯4月8号就要开始了 &a…

python -- 如何将nc数据中的时间转换为北京时区的时间

在nc数据处理时&#xff0c;以ERA5的小时数据为例&#xff0c;使用的时间为UTC&#xff0c;不同时区存在时间上的差异&#xff0c;如何将其转化为北京当地的时间呢? https://confluence.ecmwf.int/display/CKB/ERA5%3Adatadocumentation #!/usr/bin/env python3 # -*- cod…

云原生应用里的服务发现

服务定义&#xff1a; 服务定义是声明给定服务如何被消费者/客户端使用的方式。在建立服务之间的同步通信通道之前&#xff0c;它会与消费者共享。 同步通信中的服务定义&#xff1a; 微服务可以将其服务定义发布到服务注册表&#xff08;或由微服务所有者手动发布&#xff09;…

33.利用abs 解决绝对值问题(matlab程序 )

1.简述 abs函数的功能是绝对值和复数的模 语法 Y abs(X) 说明 Y abs(X) 返回数组 X 中每个元素的绝对值。如果 X 是复数&#xff0c;则 abs(X) 返回复数的模。 示例 标量的绝对值 y abs(-5) y 5 向量的绝对值 创建实值的数值向量。 x [1.3 -3.56 8.23 -5 -0.01…

在线对对联

对对联的起源可以追溯到中国古代,它与中国文化有着密切的关系。 1. 最早的对对联出现在汉朝,当时称为“对句”。它起源于民间,后来逐渐成为文人雅士的精神寄托。 2. 唐代时,对对联的格式更加规范,并被称为“春联”。它成为春节张贴的主要内容,寓意吉祥。 3. 宋代以后,对对联…

关于ETL的两种架构(ETL架构和ELT架构)

ETL&#xff0c;是英文 Extract-Transform-Load 的缩写&#xff0c;用来描述将数据从来源端经过抽取&#xff08;extract&#xff09;、转换&#xff08;transform&#xff09;、加载&#xff08;load&#xff09;至目的端的过程。ETL一词较常用在数据仓库&#xff0c;但其对象…

Spring Boot集成EasyExcel实现excel导入导出操作

文章目录 Spring Boot集成EasyExcel实现excel导入导出操作0 简要说明简单使用读操作excel源文件实体类监听器业务代码 写操作*实体类*excel示例业务代码根据参数指定列导出指定哪几列导出复杂头导出 关于数值型&#xff0c;日期型&#xff0c;浮点型数据解决方案实体类接收字符…

Idea中maven无法下载源码

今天在解决问题的时候想要下载源码&#xff0c;突然发现idea无法下载&#xff0c;这是真的蛋疼&#xff0c;没办法查看原因&#xff0c;最后发现问题的原因居然是因为Maven&#xff0c;由于我使用的idea的内置的Bundle3的Maven&#xff0c;之前没有研究过本地安装和内置的区别&…

音视频技术开发周刊 | 305

每周一期&#xff0c;纵览音视频技术领域的干货。 新闻投稿&#xff1a;contributelivevideostack.com。 大神回归学界&#xff1a;何恺明宣布加入 MIT 「作为一位 FAIR 研究科学家&#xff0c;我将于 2024 年加入麻省理工学院&#xff08;MIT&#xff09;电气工程与计算机科学…

特性Attribute

本文只提及常用的特性&#xff0c;更多特性请查看官方文档。 AddComponentMenu - Unity 脚本 API 常用特性 AddComponentMenu 添加组件菜单 使用 AddComponentMenu 属性可在“Component”菜单中的任意位置放置脚本&#xff0c;而不仅是“Component > Scripts”菜单。 使用…

线程池优雅关闭

背景 线程池是日常我们写代码时经常打交道的知识点了&#xff0c;围绕线程池除了core核心线程数和最大max线程数的知识点外&#xff0c;我们一般会忽略然而却绕不开的问题时如何关闭线程池 如何关闭线程池 首先从优雅关闭线程池代码说起&#xff1a; public boolean graful…

ESP32学习笔记(52)————三轴加速度ADXL345使用(SPI方式)

一、简介 ADXL345 是一款 ADI 公司推出的基于 iMEMS 技术的超低功耗3轴加速度计&#xff0c;分辨率高(13位)&#xff0c;测量范围达 16g。数字输出数据为 16 位二进制补码格式&#xff0c;可通过 SPI(3线或4线) 或 I2C 数字接口访问。ADXL345 非常适合移动设备应用。它可以在倾…

Linux安装mysql报错

用rpm安装mysql时报错如下&#xff1a; 解决&#xff1a; yum install -y libc.so.6 yum install -y libaio.so.1再次安装即可&#xff1a;

深度学习论文: RepViT: Revisiting Mobile CNN From ViT Perspective及其PyTorch实现

深度学习论文: RepViT: Revisiting Mobile CNN From ViT Perspective及其PyTorch实现 RepViT: Revisiting Mobile CNN From ViT Perspective PDF: https://arxiv.org/pdf/2307.09283.pdf PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代码: https://gith…

今天面试招了个25K的测试员,从腾讯出来的果然都有两把刷子···

公司前段时间缺人&#xff0c;也面了不少测试&#xff0c;前面一开始瞄准的就是中级的水准&#xff0c;也没指望来大牛&#xff0c;提供的薪资在15-25k&#xff0c;面试的人很多&#xff0c;但平均水平很让人失望。看简历很多都是4年工作经验&#xff0c;但面试中&#xff0c;不…

AR远程专家指导在汽车改装上的应用有哪些?

随着科技的不断发展&#xff0c;AR增强现实技术逐渐走进了我们的生活。加上商贸国际化&#xff0c;远程协同纵深到制造生产的更多环节&#xff0c;研发协同、工艺优化等场景复杂、跨层级、需要频繁沟通确认的流程正通过AR应用实现全面远程化的过渡&#xff0c;在汽车行业&#…

软件测试分类总结

目录 1.根据源代码可见度划分 1.1黑盒测试 1.2白盒测试 1.3灰盒测试 2.根据开发阶段划分 2.1单元测试 2.2集成测试 2.3系统测试 2.4验收测试 3.按照实施组织划分 3.1α测试 3.2β测试 3.3第三方测试 4.按照是否运行程序划分 4.1静态测试 4.2动态测试 5.根据软件测试工作的…