编程中的宝藏:二分查找

二分查找

假设你需要在电话簿中找到一个以字母 “K” 开头的名字(虽然现在谁还在用电话簿呢!)。你可以从头开始翻页,直到进入以 “K” 打头的部分。然而,更明智的方法是从中间开始,因为你知道以 “K” 打头的名字很可能在电话簿的中间部分。

类似地,当你要在字典中查找一个以字母 “O” 开头的单词时,你也会从中间附近开始搜索。

再举一个例子,当你登录 Facebook 时,系统需要核实你是否有该网站的账户。它必须在数据库中查找你的用户名。如果你的用户名是 “karlmageddon”,Facebook 可以从以字母 “A” 开头的部分开始查找。然而,更聪明的做法是从中间开始查找。

这些场景都涉及到查找问题,而在所有这些情况下,都可以使用同一种算法来解决,那就是二分查找

二分查找是一种算法,它的输入是一个有序元素列表(必须有序的原因稍后解释)。如果要查找的元素包含在列表中,二分查找会返回其位置;否则返回 -1。

下面的示例演示了二分查找的工作原理。我们随意选择一个在 1 到 100 之间的数字。

Binary Search Example

你的目标是以最少的猜测次数猜到这个数字。每次猜测后,我会告诉你是小了、大了还是猜对了。如果你从 1 开始顺序猜测,过程可能是这样的:

  • 猜测 1 -> 小了
  • 猜测 2 -> 小了
  • 猜测 3 -> 小了

这种方法被称为简单查找,更确切地说是傻找。每次猜测只能排除一个数字。如果数字是 99,你最多需要猜测 99 次才能猜对。

更聪明的查找方法

下面是一种更聪明的猜测方法:从 50 开始。

  • 猜测 50 -> 小了,但排除了一半的数字!现在你知道 1 到 50 都是小了。接下来,你猜 75。
  • 猜测 75 -> 大了,又排除了一半的数字!使用二分查找,你猜测的是中间的数字,从而每次都可以排除一半的数字。然后,你猜测 63(50 和 75 之间的数字)。

这就是二分查找,你刚刚学会了一种全新的算法!每次猜测都会排除一半的数字,如下图所示:

Binary Search Steps

不论我心里想的是哪个数字,你最多需要 7 次猜测就能找到,因为每次猜测都会排除很多数字。对比一下:

  • 简单查找:100 步
  • 二分查找:7 步

也许在使用者的角度看,这 97 步的差距似乎微不足道。然而,随着元素数量的增加,二分查找的优势会越来越明显。

现在,让我们考虑一个问题:如果你要在包含 240,000 个单词的字典中查找一个单词,最多需要多少步?假设要查找的单词位于字典的末尾,使用简单查找将需要 240,000 步。而如果使用二分查找,每次都会排除一半的单词,直到最后只剩下一个单词。

在进行二分查找时,每次排除的单词数量是通过将搜索范围减半来计算的。因为字典中有 240,000 个单词,每次排除一半,我们可以计算出每次排除的单词数量,如下:

  • 初始范围:240,000 个单词
  • 第 1 次排除:120,000 个单词
  • 第 2 次排除:60,000 个单词
  • …(后续步骤省略)

因此,使用二分查找,最多需要 18 次排除就能找到一个特定单词,即使在包含 240,000 个单词的字典中。这是因为每一次排除一半的单词,使得搜索范围迅速减小,直到只剩下一个单词。

仅当列表是有序的时候,二分查找才适用。例如,电话簿中的名字按字母顺序排列,因此可以使用二分查找来查找名字。

运行时间

让我们再次回到二分查找。使用二分查找相比于简单查找能节省多少时间呢?简单查找是逐个地检查数字,如果列表包含 100 个数字,最多需要猜测 100 次。而如果列表包含 40 亿个数字,最多需要猜测 40 亿次。换句话说,最多需要的猜测次数与列表的长度相同,这种情况被称为线性时间(linear time)

然而,二分查找则不同。如果列表包含 100 个元素,最多只需猜测 7 次;如果列表包含 40 亿个数字,最多只需猜测 32 次。相比之下,二分查找的运行时间是对数时间(logarithmic time)

下表总结了我们所发现的情况:

Comparison

总结

​ 当我们进一步探讨二分查找和简单查找之间的差异时,不难发现,二分查找的性能优势随着元素数量的增加变得更加显著。虽然在开始时,二分查找的速度提升可能并不明显,但随着列表规模的增长,它的优越性将愈发凸显出来。

​ 简单查找以线性时间的方式进行,每增加一个元素,它需要的额外时间也会线性增长。这就导致当元素数量庞大时,每次查找都会变得耗时且不实际。例如,如果你有一个拥有数百万个元素的数据集,使用简单查找进行查询可能会变得极其缓慢,甚至不切实际。然而,二分查找以对数时间的方式运作,每次查找只需要排除一半的元素。

​ 这意味着,尽管数据量增加,每次查找所需的额外时间增长得非常缓慢。就像是在探索一个迷宫时,你只需每次选择一个正确的路径,逐渐逼近目标,而不是逐一检查所有可能的路径。

​ 这种对数级别的优越性意味着,在大数据集或者长列表中,二分查找的速度几乎不会受到影响。它的查询速度可以在常数时间内保持,无论数据规模如何增长。而这也是为什么在现代计算机科学中,二分查找是一种备受推崇的高效算法。

​ 因此,无论是在简单的名字查找、大规模数据处理,还是搜索庞大的字典中的单词,二分查找都是一种强大的工具,能够在海量信息中快速找到目标。在信息爆炸的今天,掌握并充分利用这种高效的算法,对于优化搜索效率、提升数据处理速度至关重要。

代码示例

Python

def binary_search(lst, item):left = 0right = len(lst) - 1while left <= right:# 你每次都检查中间的元素。mid = (left + right) // 2val = lst[mid]if val == item:return midif val > item:# 如果猜的数字大了,就修改rightright = mid - 1else:# 如果猜的数字小了,就相应地修改left。left = mid + 1return -1  # Return -1 if item is not foundmy_list = [1, 2, 3, 4, 5, 6, 7, 8]print(binary_search(my_list, 6))

Java

public class BinarySearch {public static int binarySearch(int[] arr, int target) {int left = 0;int right = arr.length - 1;while (left <= right) {int mid = (left + right) / 2;int val = arr[mid];if (val == target) {return mid;}if (val > target) {right = mid - 1;} else {left = mid + 1;}}return -1;}public static void main(String[] args) {int[] myArray = {1, 2, 3, 4, 5, 6, 7, 8};int searchItem = 6;int result = binarySearch(myArray, searchItem);System.out.println(result);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/83644.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity游戏源码分享-仿开心消消乐Match3Jewel

Unity游戏源码分享-仿开心消消乐Match3Jewel 工程地址&#xff1a; https://download.csdn.net/download/Highning0007/88198762

Oracle DB 安全性 : TDE HSM TCPS Wallet Imperva

• 配置口令文件以使用区分大小写的口令 • 对表空间进行加密 • 配置对网络服务的细粒度访问 TCPS 安全口令支持 Oracle Database 11g中的口令&#xff1a; • 区分大小写 • 包含更多的字符 • 使用更安全的散列算法 • 在散列算法中使用salt 用户名仍是Oracle 标识…

嵌入式开发:高薪与广阔前景

嵌入式开发是高薪且前景广阔的领域。随着物联网和智能化的快速发展&#xff0c;嵌入式开发人才需求不断增加&#xff0c;市场供应相对不足&#xff0c;导致竞争激烈&#xff0c;推动了薪资水平的提升。 嵌入式开发的复杂性和技术要求使得企业为了吸引优秀人才&#xff0c;普遍…

Java一般用于postgis空间数据库通用的增删查改sql命令

目录 1 增加 2 删除 3 查询 4 更新 "public"."JGSQGW_Geo"为某模式下得表 一般postgrel有这样的设计模式 1 增加 #前端绘制出的数据插入 INSERT INTO "public"."JGSQGW_Geo" ( "geom","gridone","gridon…

Zookeeper特性与节点数据类型详解

CAP&Base理论 CAP理论 cap理论是指对于一个分布式计算系统来说&#xff0c;不可能满足以下三点: 一致性 &#xff1a; 在分布式环境中&#xff0c;一致性是指数据在多个副本之间是否能够保持一致的 特性&#xff0c;等同于所有节点访问同一份最新的数据副本。在一致性的需…

【积水成渊】uniapp高级玩法分享

大家好&#xff0c;我是csdn的博主&#xff1a;lqj_本人 这是我的个人博客主页&#xff1a; lqj_本人_python人工智能视觉&#xff08;opencv&#xff09;从入门到实战,前端,微信小程序-CSDN博客 最新的uniapp毕业设计专栏也放在下方了&#xff1a; https://blog.csdn.net/lbcy…

golang学习随记

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 go学习快捷键及快速生成代码片段go基础循环流程控制关键字切片&#xff0c;拷贝函数闭包 defer语句格式化输出go语言随机数rand.seed() 包管理并发编程goroutinecha…

Java经典面试题总结(一)

Java经典面试题总结&#xff08;一&#xff09; 题一&#xff1a;Java编译运行原理题二&#xff1a;JDK&#xff0c;JVM&#xff0c;JRE三者之间的关系题三&#xff1a;谈一下对冯诺依曼体系的了解题四&#xff1a;重载与重写的区别题五&#xff1a;拆箱装箱是指什么&#xff1…

《OWASP代码审计》学习——跨站脚本注入(XSS)

一、跨站脚本概述 1.什么是跨站脚本 跨站点脚本(XSS)是一种编码注入漏洞。它通常出现在 web 应用程序中。XSS 使攻击者能够向其他用户浏览的网页中注入恶意内容。XSS 允许攻击者绕过访问控制&#xff0c;它是 OWASP Top10 最常见的漏洞之一。XSS 是网络服务器上的第二大漏洞。…

C# OpenCvSharp 去水印 图像修复

效果 项目 VS2022.net4.8OpenCvSharp4 代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.IO; using System.Linq; using System.Security.Cryptography; using System.Text; usi…

【Windows10下启动RocketMQ报错:找不到或无法加载主类 Files\Java\jdk1.8.0_301\lib\dt.jar】解决方法

Windows10下启动RocketMQ报错&#xff1a;找不到或无法加载主类 一、问题产生二、产生原因三、解决办法 一、问题产生 参考RocketMQ Github官网上的说明&#xff0c;下载rocketmq-all-5.1.3-bin-release.zip&#xff0c;解压配置环境变量后&#xff0c;执行如下命令&#xff1a…

【C++11】列表初始化 | decltype操作符 | nullptr | STL的更新

文章目录 一.列表初始化1. 花括号初始化2. initializer_list 二.decltype三.nullptr四.STL的更新1.STL新增容器2.字符串转换函数3.容器中的一些新方法 一.列表初始化 1. 花括号初始化 { }的初始化 C98中&#xff0c;标准允许使用大括号{}对数组或者结构体元素进行统一的列表初…

搭建一个自己的文档网站

目录 简介 快速上手 配置 首页 组件Demo案例 简介 有时候我们可能很好奇&#xff0c;像elementUi或者vue3他们的文档网站是怎么写的&#xff0c;其实写vue文档网站的技术&#xff0c;有两个&#xff1a;一个是vuePress&#xff0c;一个是vitePress。从名字上可以看出来&#…

通过Shinami快速使用赞助交易(Gas代付)

Web3中对钱包和tokens的要求对于新用户来说是最大的挑战。Sui上的赞助交易不仅为用户提供丝滑的体验&#xff0c;还为构建者开辟了更多的收入模式。 按需付费的区块链模型直接支持网络基础设施&#xff0c;但对于那些已经习惯了Web2世界中看似免费服务的用户来说&#xff0c;这…

【计算机视觉】干货分享:Segmentation model PyTorch(快速搭建图像分割网络)

一、前言 如何快速搭建图像分割网络&#xff1f; 要手写把backbone &#xff0c;手写decoder 吗&#xff1f; 介绍一个分割神器&#xff0c;分分钟搭建一个分割网络。 仓库的地址&#xff1a; https://github.com/qubvel/segmentation_models.pytorch该库的主要特点是&#…

UEditorPlus v3.3.0 图片上传压缩重构,UI优化,升级基础组件

UEditor是由百度开发的所见即所得的开源富文本编辑器&#xff0c;基于MIT开源协议&#xff0c;该富文本编辑器帮助不少网站开发者解决富文本编辑器的难点。 UEditorPlus 是有 ModStart 团队基于 UEditor 二次开发的富文本编辑器&#xff0c;主要做了样式的定制&#xff0c;更符…

了解IL汇编异常处理语法

从网上拷过来一个IL汇编程序&#xff0c;编译时先报如下错&#xff0c; 看它是把空格识别为了下注红线的字符&#xff0c;这是字符编码的问题&#xff0c;用记事本替换功能替换了&#xff1b; 然后又报如下的错&#xff0c; 看不出来问题&#xff0c;拷一句正确的来&#xff0…

周末在家值班,解决几个月前遗忘的Bug

问题&#xff1a; 周末被迫在家值班&#xff0c;无聊之际打开尘封已久的Bug清单&#xff0c;发现有Bug拖了几个月还没解决… 场景是这样子的&#xff0c;有个功能是拿Redis缓存热点数据进行展示&#xff0c;暂且称它为功能A&#xff0c;有个另外的功能B&#xff0c;它会去更新缓…

机器学习笔记:李宏毅ChatGPT课程1:刨析ChatGPT

ChatGPT——Chat Generative Pre-trained Transformer 1 文字接龙 每次输出一个概率分布&#xff0c;根据概率sample一个答案 ——>因为是根据概率采样&#xff0c;所以ChatGPT每次的答案是不一样的&#xff08;把生成式学习拆分成多个分类问题&#xff09;将生成的答案加到…

Spring MVC项目概述及创建

Spring MVC项目概述及创建 1.什么是Spring MVC Spring MVC是基于SevletAPI的原始Web框架。Spring MVC项目也叫做SpringWeb项目。 它是在springboot项目中引入了web框架&#xff0c;原本的spring项目不具备网络通信能力&#xff0c;而spring mvc允许http响应&#xff0c;当用…