一元函数微积分的几何应用:二维平面光滑曲线的曲率公式

文章目录

  • 前言
  • 曲率和曲率半径的定义
  • 曲率计算公式
    • 参数方程形式
    • 直角坐标显式方程形式
    • 极坐标形式
    • 向量形式

前言

本文将介绍二维平面光滑曲线的曲率定义以及不同形式的曲率及曲率半径公式的推导。

曲率和曲率半径的定义

(关于二维平面光滑曲线的定义以及弧长公式请参考:一元函数定积分的几何应用:二维平面光滑曲线弧长公式的推导)

对一条光滑曲线上 l l l上的一个曲线段 A B ⌢ \mathop{AB}\limits^ \frown AB, 我们用 A A A点的切线 τ A \tau_A τA B B B点的切线 τ B \tau_B τB之间的夹角 Δ φ \Delta \varphi Δφ来刻画这一段曲线的弯曲程度。当 A B ⌢ \mathop{AB}\limits^ \frown AB的弧长 Δ s \Delta s Δs固定时,若切线的夹角越大,则曲线的弯曲程度越大。因此我们将曲线段 A B ⌢ \mathop{AB}\limits^ \frown AB平均曲率定义如下:

K ‾ = ∣ Δ φ Δ s ∣ \begin{equation} \overline{K}=\left| \dfrac{\Delta \varphi}{\Delta s}\right| \end{equation} K= ΔsΔφ

平均曲率刻画了曲线段 A B ⌢ \mathop{AB}\limits^ \frown AB的平均弯曲程度。当 A , B A,B A,B两点越接近,即 Δ s \Delta s Δs越小,平均曲率则越能精确刻画光滑曲线 l l l A A A点的弯曲程度,因此我们定义在某一个点上的曲率为:

K = lim ⁡ Δ s → 0 ∣ Δ φ Δ s ∣ = ∣ d φ d s ∣ \begin{equation} K=\lim_{\Delta s \rightarrow 0}\left| \dfrac{\Delta \varphi}{\Delta s}\right|=\left|\dfrac{\mathrm{d}\varphi}{\mathrm{d} s}\right| \end{equation} K=Δs0lim ΔsΔφ = dsdφ

若光滑曲线上某一点的曲率不为零,则我们定义该点曲率的倒数为曲线在该点的曲率半径
R = 1 K \begin{equation} R=\dfrac{1}{K} \end{equation} R=K1

曲率计算公式

参数方程形式

设光滑曲线由参数方程
{ x = x ( t ) , y = y ( t ) , t ∈ [ T 1 , T 2 ] \begin{cases}x=x(t), \\ y=y(t),\end{cases} t\in [T_1,T_2] {x=x(t),y=y(t),t[T1,T2]
来确定, x ( t ) , y ( t ) x(t),y(t) x(t),y(t)存在二阶导数,则曲线上点的切线斜率为

d y d x = y ′ ( t ) x ′ ( t ) = tan ⁡ φ \begin{equation} \dfrac{\mathrm{d}y}{\mathrm{d}x}=\dfrac{y'(t)}{x'(t)}=\tan{\varphi} \end{equation} dxdy=x(t)y(t)=tanφ

其中 φ \varphi φ是切线与 x x x轴的夹角。将 φ \varphi φ t t t求导,可以得到:

d φ d t = d d t arctan ⁡ ( y ′ ( t ) x ′ ( t ) ) = 1 1 + [ y ′ ( t ) x ′ ( t ) ] 2 ⋅ x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) x ′ 2 ( t ) = x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) x ′ 2 ( t ) + y ′ 2 ( t ) \begin{equation} \dfrac{\mathrm{d}\varphi}{\mathrm{d}t}= \dfrac{\mathrm{d}}{\mathrm{d}t} \arctan\left(\dfrac{y'(t)}{x'(t)}\right) =\dfrac{1}{1+\left[\dfrac{y'(t)}{x'(t)}\right]^2} \cdot\dfrac{x'(t)y''(t)-x''(t)y'(t)}{{x'}^2(t)} =\dfrac{x'(t)y''(t)-x''(t)y'(t)}{{x'}^2(t)+{y'}^2(t)} \end{equation} dtdφ=dtdarctan(x(t)y(t))=1+[x(t)y(t)]21x2(t)x(t)y′′(t)x′′(t)y(t)=x2(t)+y2(t)x(t)y′′(t)x′′(t)y(t)

根据弧长的微分公式我们可以得到

d s d t = x ′ 2 ( t ) + y ′ 2 ( t ) \begin{equation} \dfrac{\mathrm{d}s}{\mathrm{d}t}=\sqrt{{x'}^2(t)+{y'}^2(t)} \end{equation} dtds=x2(t)+y2(t)

因此该点的曲率为

K = ∣ d φ d s ∣ = ∣ d φ d t d s d t ∣ = ∣ x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ∣ [ x ′ 2 ( t ) + y ′ 2 ( t ) ] 3 2 \begin{equation} K=\left|\dfrac{\mathrm{d}\varphi}{\mathrm{d}s}\right|=\left| \dfrac{\dfrac{\mathrm{d}\varphi}{\mathrm{d}t}}{\dfrac{\mathrm{d}s}{\mathrm{d}t}}\right|=\dfrac{\left|x'(t)y''(t)-x''(t)y'(t)\right|}{[{x'}^2(t)+{y'}^2(t)]^{\frac{3}{2}}} \end{equation} K= dsdφ = dtdsdtdφ =[x2(t)+y2(t)]23x(t)y′′(t)x′′(t)y(t)

直角坐标显式方程形式

若曲线由 y = f ( x ) , x ∈ [ a , b ] y=f(x), x\in[a,b] y=f(x),x[a,b]表示,且 y y y存在二阶导数,则曲线上某一点的斜率为

tan ⁡ φ = y ′ \begin{equation} \tan{\varphi}=y' \end{equation} tanφ=y

则夹角的微分为

d φ = y ′ ′ 1 + y ′ 2 d x \begin{equation} \mathrm{d}\varphi=\dfrac{y''}{1+{y'}^2}\mathrm{d}x \end{equation} dφ=1+y2y′′dx

弧长的微分为

d s = 1 + y ′ 2 d x \begin{equation} \mathrm{d}s=\sqrt{1+{y'}^2}\mathrm{d}x \end{equation} ds=1+y2 dx

因此相应的曲率计算公式为

K = ∣ d φ d s ∣ = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 \begin{equation} K=\left|\dfrac{\mathrm{d}\varphi}{\mathrm{d}s}\right|=\dfrac{|y''|}{(1+{y'}^2)^{\frac{3}{2}}} \end{equation} K= dsdφ =(1+y2)23y′′

极坐标形式

假设曲线的极坐标方程为 r = r ( θ ) , θ ∈ [ α , β ] ⊂ [ 0 , 2 π ] r=r(\theta), \theta \in [\alpha, \beta]\subset[0, 2\pi] r=r(θ),θ[α,β][0,2π],且 r r r二阶可导。则点 ( r , θ ) (r, \theta) (r,θ)处的直角坐标为
x ( θ ) = r cos ⁡ θ , y ( θ ) = r sin ⁡ θ x ′ ( θ ) = r ′ cos ⁡ θ − r sin ⁡ θ , y ′ ( θ ) = r ′ sin ⁡ θ + r cos ⁡ θ x ′ ′ ( θ ) = r ′ ′ ( θ ) cos ⁡ θ − 2 r ′ sin ⁡ θ − r cos ⁡ θ y ′ ′ ( θ ) = r ′ ′ sin ⁡ θ + 2 r ′ cos ⁡ θ − r sin ⁡ θ \begin{align} &x(\theta)=r\cos{\theta}, y(\theta)=r\sin{\theta} \\ &x'(\theta)=r'\cos{\theta}-r\sin{\theta}, y'(\theta)=r'\sin{\theta}+r\cos{\theta} \\ &x''(\theta)=r''(\theta)\cos{\theta}-2r'\sin{\theta}-r\cos{\theta} \\ &y''(\theta)=r''\sin{\theta}+2r'\cos{\theta}-r\sin{\theta} \end{align} x(θ)=rcosθ,y(θ)=rsinθx(θ)=rcosθrsinθ,y(θ)=rsinθ+rcosθx′′(θ)=r′′(θ)cosθ2rsinθrcosθy′′(θ)=r′′sinθ+2rcosθrsinθ

将上面的式子全部带入 ( 7 ) (7) (7)式(此时将 θ \theta θ视为参数),化简后就得到了极坐标下的曲率公式:

K = ∣ r 2 + 2 r ′ 2 − r r ′ ′ ∣ ( r 2 + r ′ 2 ) 3 2 \begin{equation} K=\dfrac{|r^2+2{r'}^2-rr''|}{(r^2+{r'}^2)^{\frac{3}{2}}} \end{equation} K=(r2+r2)23r2+2r2rr′′

向量形式

我们定义二维平面光滑曲线上任意一点的向量为 r = ( x ( t ) , y ( t ) ) \boldsymbol{r}=(x(t),y(t)) r=(x(t),y(t)),则 ( 7 ) (7) (7)式可以改写成

K = ∣ x ′ ( t ) y ′ ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) ∣ [ x ′ 2 ( t ) + y ′ 2 ( t ) ] 3 2 = ∣ r ′ × r ′ ′ ∣ ∣ r ′ ∣ 3 \begin{equation} K=\dfrac{\left|x'(t)y''(t)-x''(t)y'(t)\right|}{[{x'}^2(t)+{y'}^2(t)]^{\frac{3}{2}}}=\dfrac{|\boldsymbol{r}'\times \boldsymbol{r}''|}{|\boldsymbol{r}'|^3} \end{equation} K=[x2(t)+y2(t)]23x(t)y′′(t)x′′(t)y(t)=r3r×r′′

此即向量形式的曲率公式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/8378.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(1)SpringBoot入门+彩蛋

SpringBoot 官网(中文):Spring Boot 中文文档 Spring Boot是由Pivotal团队提供的一套开源框架,可以简化spring应用的创建及部署。它提供了丰富的Spring模块化支持,可以帮助开发者更轻松快捷地构建出企业级应用。Spring Boot通过自动配置功能…

C语言从入门到进阶

视频:https://www.bilibili.com/video/BV1Vm4y1r7jY?spm_id_from333.788.player.switch&vd_sourcec988f28ad9af37435316731758625407&p23 //枚举常量 enum Sex{MALE,FEMALE,SECRET };printf("%d\n", MALE);//0 printf("%d\n", FEMALE…

MacOS安装Docker battery-historian

文章目录 需求安装battery-historian实测配置国内源相关文章 需求 分析Android电池耗电情况、唤醒、doze状态等都要用battery-historian, 在 MacOS 上安装 battery-historian,可以使用 Docker 进行安装runcare/battery-historian:latest。装完不需要做任…

公式与函数的应用

一 相邻表格相乘 1 也可以复制 打印标题

DeepSeek学术写作测评第二弹:数据分析、图表解读,效果怎么样?

我是娜姐 迪娜学姐 ,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。 针对最近全球热议的DeepSeek开源大模型,娜姐昨天分析了关于论文润色、中译英的详细效果测评: DeepSeek学术写作测评第一弹:论文润色&#…

MongoDB平替数据库对比

背景 项目一直是与实时在线监测相关,特点数据量大,读写操作大,所以选用的是MongoDB。但按趋势来讲,需要有一款国产数据库可替代,实现信创要求。选型对比如下 1. IoTDB 这款是由清华大学主导的开源时序数据库&#x…

动手学深度学习-卷积神经网络-3填充和步幅

目录 填充 步幅 小结 在上一节的例子(下图) 中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维数为22。 正如我们在 上一节中所概括的那样,假设输入形状为nhnw,卷积核形…

简易CPU设计入门:控制总线的剩余信号(二)

项目代码下载 请大家首先准备好本项目所用的源代码。如果已经下载了,那就不用重复下载了。如果还没有下载,那么,请大家点击下方链接,来了解下载本项目的CPU源代码的方法。 CSDN文章:下载本项目代码 上述链接为本项目…

【MySQL】 数据类型

欢迎拜访:雾里看山-CSDN博客 本篇主题:【MySQL】 数据类型 发布时间:2025.1.27 隶属专栏:MySQL 目录 数据类型分类数值类型tinyint类型数值越界测试结果说明 bit类型基本语法使用注意事项 小数类型float语法使用注意事项 decimal语…

深度剖析C++17中的std::optional:处理可能缺失值的利器

文章目录 一、基本概念与设计理念二、构建与初始化(一)默认构造(二)值初始化(三)使用std::make_optional(四)使用std::nullopt 三、访问值(一)value()&#x…

云计算架构学习之LNMP架构部署、架构拆分、负载均衡-会话保持

一.LNMP架构部署 1.1. LNMP服务搭建 1.磁盘信息 2.内存 3.负载信息 4.Nginx你们公司都用来干嘛 5.文件句柄(文件描述符 打开文件最大数量) 6.你处理过系统中的漏洞吗 SSH漏洞 7.你写过什么shell脚本 8.监控通过什么告警 zabbix 具体监控哪些内容 9.mysql redis查询 你好H…

[BSidesCF 2020]Had a bad day1

题目 这里有传参 文件包含使用伪协议读取flag 先读取index.php查看 /index.php?categoryphp://filter/readconvert.base64-encode/resourceindex 解码 index.php源码 <?php$file $_GET[category];if(isset($file)){if( strpos( $file, "woofers" ) ! false …

12 款开源OCR发 PDF 识别框架

2024 年 12 款开源文档解析框架的选型对比评测&#xff1a;PDF解析、OCR识别功能解读、应用场景分析及优缺点比较 这是该系列的第二篇文章&#xff0c;聚焦于智能文档处理&#xff08;特别是 PDF 解析&#xff09;。无论是在模型预训练的数据收集阶段&#xff0c;还是基于 RAG…

银行卡三要素验证接口:方便快捷地实现银行卡核验功能

银行卡三要素验证API&#xff1a;防止欺诈交易的有力武器 随着互联网的发展&#xff0c;电子支付方式也越来越普及。在支付过程中&#xff0c;银行卡是最常用的支付工具之一。然而&#xff0c;在一些支付场景中&#xff0c;需要对用户的银行卡信息进行验证&#xff0c;以确保支…

Lite.Ai.ToolKit - 一个轻量级的 C++ 工具包

&#x1f6e0;**Lite.Ai.ToolKit**&#xff1a;一个轻量级的 C 工具包&#xff0c;包含 100 个很棒的 AI 模型&#xff0c;例如对象检测、人脸检测、人脸识别、分割、遮罩等。请参阅 Model Zoo 和 ONNX Hub、MNN Hub、TNN Hub、NCNN Hub。 3700 Stars 711 Forks 0 Issues 6 贡献…

node.js 07.npm下包慢的问题与nrm的使用

一.npm下包慢 因为npm i 默认从npm官网服务器进行下包,但是npm官网服务器是海外服务器所以响应很慢. 于是我们通过npm下包的时候通常用淘宝镜像进行下包,下面是切换到淘宝镜像地址下包的操作. 二.nrm的使用 nrm是一个管理切换npm下包地址的工具,可以快速切换下包的地址. 安…

读书笔记--分布式服务架构对比及优势

本篇是在上一篇的基础上&#xff0c;主要对共享服务平台建设所依赖的分布式服务架构进行学习&#xff0c;主要记录和思考如下&#xff0c;供大家学习参考。随着企业各业务数字化转型工作的推进&#xff0c;之前在传统的单一系统&#xff08;或单体应用&#xff09;模式中&#…

基于ADS的电感和变压器的建模过程

1. 电感二端口建模 对于固定尺寸单圈电感&#xff0c;从0.5G-200GHz的仿真&#xff0c;并提取其模型 如果想要在50GHz前把模型建准&#xff0c;仿真可能要建到200G&#xff0c;因为需要高频的数据&#xff0c;频率越高信息也越多。首先要调用文件由于数据是存在一个文件夹里面的…

使用Maxscript定义纹理贴图的方法

在3ds Max中,MaxScript 是一种用于插件编写和自动化任务的强大工具。通过MaxScript,你可以创建和操作对象、材质、灯光等等。要为材质分配纹理贴图,你可以按照以下方法来编写脚本。直接代码: myBmp = bitmaptexture filename:"D:\map001.tga" meditmaterials[1]…

初阶数据结构:链表(二)

目录 一、前言 二、带头双向循环链表 1.带头双向循环链表的结构 &#xff08;1)什么是带头&#xff1f; (2)什么是双向呢&#xff1f; &#xff08;3&#xff09;那什么是循环呢&#xff1f; 2.带头双向循环链表的实现 &#xff08;1&#xff09;节点结构 &#xff08;2…