Mask RCNN网络结构以及整体流程的详细解读

文章目录

  • 1、概述
  • 2、Backbone
  • 3、RPN网络
    • 3.1、anchor的生成
    • 3.2、anchor的标注/分配
    • 3.3、分类预测和bbox回归
    • 3.4、NMS生成最终的anchor
  • 4、ROI Head
    • 4.1、ROI Align
    • 4.2、cls head和bbox head
    • 4.3、mask head

1、概述

  • Mask RCNN是在Faster RCNN的基础上增加了mask head用于实例分割的模型。
  • 总体来说,Mask RCNN网络结构可以分为:BackBone(ResNet+FPN) —> RPN网络(Region Proposal Network) —> ROI Head(ROIAlign + cls head + bbox head + mask head)
  • 整体网络结构如下(来自原论文https://arxiv.org/pdf/1703.06870.pdf):
    在这里插入图片描述

2、Backbone

  • Backbone主要由ResNet和FPN组成,如下图
    在这里插入图片描述

1)C1-C5是指ResNet网络5个stage输出的特征图,下采样率分别为2, 4, 8, 16, 32,通道数分别为64, 256, 512, 1024, 2048

在这里插入图片描述

2)FPN网络类似于UNet网络中的跳级连接,都是为了增强多尺度表征能力的:分别对C2-C5四个特征图通过1 × \times × 1卷积改变通道数为256,再与上采样路径中对应尺度的特征图相加。得到的P2-P6就是FPN网络的五个特征图,下采样率为4, 8, 16, 32, 64,通道数都为256
3)需要注意的是,P2-P6这五个特征图将分别作为RPN网络的输入和ROI Head中的ROI Align的输入:

RPN网络的输入:用于在这五个特征图上生成先验的anchor,并对这些anchor进行类别预测和bbox回归,以生成最终的anchor输入到ROI Head中
ROI Align的输入:根据RPN网络生成的anchors,提取这五个特征图中对应的ROI区域特征图,输入到cls、bbox和maskhead中

3、RPN网络

  • RPN网络为Region Proposal Network,主要作用:用于生成先验的anchor box/proposals;并将P2-P6这五个特征图作为网络输入学习得到这些先验的anchor box/proposal的类别(前景or背景)以及通过bbox 回归得到偏移量;最终经过RPN网络预测得到的具有更高质量的proposal送入ROI Head中
  • 主要流程为:1)anchor的生成;2)anchor的标注;3)P2-P6五个特征图进行二分类的预测和bbox回归;4)通过NMS后处理得到最终的anchor

3.1、anchor的生成

  • 在P2-P6的五个特征图上分别对应设置5个不同的anchor size(32, 64, 128, 256, 512)并设置3种长宽比(0.5, 1.0, 2.0),也就是每个特征图的每个像素点生成3个anchor(x, y, w, h)
  • 具体来说,特征图中的每个点都会先映射到原始图像中,并以该点为中心,以对应的anchor size和3种长宽比的设置,生成3个anchor(x, y, w, h)
  • 例如,输入图像为512 × \times × 512,那么五个特征图的尺寸分别为128, 64, 32, 16, 8,那么生成的anchors的数量为(128 × \times × 128 + 64 × \times × 64 + 32 × \times × 32 + 16 × \times × 16 + 8 × \times × 8) × \times × 3 = 21824 × \times × 3 = 65472个anchors

3.2、anchor的标注/分配

  • 该过程就是确定生成的所有anchor为正样本or负样本
  • 标注流程如下:

1)先排除掉超过原图边界的anchors;
2)计算其余的每个anchor与 所有ground truth bbox的IoU,取与每个bbox的的最大IoU作为判断:大于0.7为正样本,小于0.3为负样本;
3)计算每个bbox与那个anchor的IoU最大,把该anchor也标记为正样本

  • 最后随机选择128个正样本和128个负样本用于RPN网络的训练,对于分类:128个正样本的label为1,128个负样本的label和剩下的anchor的label为0;对于bbox回归:超过边界的anchor的label为(0, 0, 0, 0),其余anchor的label是与它对应的具有最大IoU的bbox的实际偏移量

3.3、分类预测和bbox回归

  • 首先对5个特征图进行3 × \times × 3卷积,然后分为2个分支
  • 分类分支为1 × \times × 1卷积,输出通道数为num_anchors=3,表示的是特征图的每个像素点对应的3个anchors为前景的概率值。

需要注意的是,五个特征图分别作为3 × \times × 3卷积和该分支的1 × \times × 1卷积的输入计算得到概率值,再计算128个正样本和128个负样本的分类损失,也就是说只有一组3 × \times × 3卷积和1 × \times × 1卷积

  • bbox回归分支为1 × \times × 1卷积,输出通道数为num_anchors × \times × 4 = 12,表示3个anchor的4个预测位置参数

以下为bbox回归的详细介绍,预测得到的(dx, dy, dw, dh)与ground truth之间计算Smooth L1损失
在这里插入图片描述
在这里插入图片描述

  • 训练RPN网络:对128个正样本和128个负样本计算分类损失:二分类交叉熵损失函数,以及回归损失:Smooth L1损失

3.4、NMS生成最终的anchor

  • 根据RPN网络生成的所有anchor的score和4个位置参数(tx, ty, tw, th)进行如下操作:

1)根据偏移量对anchor的位置进行微调,得到(x, y, w, h)
2)删除掉超过边界的anchor
3)根据score对anchor从大到小进行排序
4)对于每个尺度上的特征图(就是P2-P6的五个特征图),选择前2000个anchor,在经过NMS之后选择最高1000个anchors作为最终的anchor输入到ROI Head中(这些数量属于超参数,可调整)

  • 例如,5个特征图在NMS之前选择的前2000个anchor如下,3和4没到2000是因为他们的特征图P5和P6的尺寸分别为16和8,计算得到的anchors数量为768和192。
    在这里插入图片描述

  • 训练阶段和推理阶段有一些不同:

训练阶段:计算loss并生成anchor
推理阶段:直接生成anchor

  • 生成anchor的NMS的配置可能不同,例如:

训练阶段
在这里插入图片描述
推理阶段
在这里插入图片描述

4、ROI Head

  • 主要包括ROI ALign和3个head: class head, bbox head, mask head

4.1、ROI Align

  • RPN网络最终生成的anchors将作为ROI Align的输入,也就是说根据这些anchors(x, y, w, h) 来提取P2-P6特征图中的anchors对应的特征作为3个head的特征图输入。
  • 我们首先要知道anchors的坐标位置(x, y, w, h)表示的是原图像中的区域,可以将其映射到特征图中,Faster RCNN正是采用了ROI pooling层映射为固定尺寸的ROI区域:
    在这里插入图片描述
  • 但是ROI pooling层由于存在取整操作,对于一些小目标很容易导致区域不匹配问题,因此Mask RCNN采用了ROI ALign操作

1)将anchor映射到对应的特征图中,w和h在被除时不去整,ROI pooling取整了。对于五个特征图的选择方法如下:
在这里插入图片描述

2)将映射后的ROI区域均匀分为K × \times ×K的bin,每个bin的大小不取整,ROI pooling取整了
3)每个bin的每个像素值计算为特征图中与它邻近的4个值的双线性插值
在这里插入图片描述

4)使用max pooling或者average pooling得到K × \times ×K特征图(7 × \times × 7或者14 × \times × 14)作为3个head的输入
在这里插入图片描述

4.2、cls head和bbox head

  • 首先是样本的标注与分配

1)计算由RPN网络最终生成的所有anchors与每个GT bbox的IoU值,取每个anchor的最大IoU值进行判断:IoU>0.5的样本中选择128个正样本,小于0.5的样本中选择384个负样本
在这里插入图片描述

2)对于类别标签:正样本为对应的GT bbox的类别标签,负样本为0;对于bbox回归的标签:与该样本最大IoU值的GT bbox的实际偏移量

  • 将这512个样本anchors通过ROI Align获取得到512个7 × \times × 7 × \times × 256的特征图作为class head和bbox head的输入,进行如下的前向传播:一般为2个3*3卷积+2个fc层
    在这里插入图片描述
  • 最后就是损失函数的计算:分类损失为多类别交叉熵损失,回归损失也是Smooth L1损失

4.3、mask head

  • mask标签和输入特征图的获取

1)计算每个anchor在原始图像中的大mask,就是根据位置参数在原图像的二值mask框出来的
2)根据计算得到的每个anchor对应尺度的特征图(P2-P6中的一个),将anchor位置参数除以缩放倍数/下采样率再进行ROI Align得到512个14 × \times × 14 × \times × 256的特征图作为mask head的输入;
3)而对于大mask也进行倍数缩放,就可以得到每个anchor在对应特征图上的mask(软掩码)—>二值化—>硬掩码

  • 对输入特征图再通过FCN层进行预测得到28 × \times × 28的预测mask结果

在这里插入图片描述

  • 最后进行损失函数的计算,为交叉熵损失
  • 需要注意的是,推理阶段不一样,有先后顺序:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/83878.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WebSocket与消息推送

B/S结构的软件项目中有时客户端需要实时的获得服务器消息,但默认HTTP协议只支持请求响应模式,这样做可以简化Web服务器,减少服务器的负担,加快响应速度,因为服务器不需要与客户端长时间建立一个通信链接,但…

软件包管理

一、rpm管理软件包 1、获得rpm的软件包 1)去官网安装不推荐 找自己光盘有没有这个包 装好需要的包之后装qq 2)去镜像站点,推荐 二、yum/dnf管理软件包 解决软件的依赖关系,可以自动的去服务器下载软件包 1、使用yum软件包 使用…

网页版Java(Spring/Spring Boot/Spring MVC)五子棋项目(二)前后端实现用户的登录和注册功能【用户模块】

网页版Java五子棋项目(二)前后端实现用户的登录和注册功能【用户模块】 在用户模块我们要清楚要完成的任务一、MyBatis后端操作数据库1. 需要在数据库创建用户数据库1. 用户id2. 用户名3. 密码4. 天梯积分5. 总场数6. 获胜场数 2. 创建用户类User和数据库…

【Yolov5+Deepsort】训练自己的数据集(2)| 目标检测追踪 | 轨迹绘制

📢前言:本篇是关于如何使用YoloV5Deepsort训练自己的数据集,从而实现目标检测与目标追踪,并绘制出物体的运动轨迹。本章讲解的为第二部分内容:训练集的采集与划分,Yolov5模型的训练。本文中用到的数据集均为…

01-向量究竟是什么?

文章作者:里海 来源网站:https://blog.csdn.net/WangPaiFeiXingYuan 向量究竟是什么 引入一些数作为坐标是一种鲁莽的行为 ——赫尔曼外尔 The introduction of numbers as coordinates is an act of violence - Hermann Weyl 向量的定义 向量&#xff0…

【TypeScript】类型断言-类型的声明和转换(五)

【TypeScript】类型断言-类型的声明和转换(五) 【TypeScript】类型断言-类型的声明和转换(五)一、简介二、断言形式2.1 尖括号语法2.2 as形式 三、断言类型3.1 非空断言3.2 肯定断言-肯定化保证赋值3.3 将任何类型断言为any3.4 调…

6.5.tensorRT高级(1)-alphapose模型导出、编译到推理(无封装)

目录 前言1. alphapose导出2. alphapose推理3. 讨论总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。 本次课程学习 tensorRT 高级-alphap…

Java基础(八)二维数组

数组 二、二维数组 1. 二维数组使用步骤 定义二维数组 格式:数据类型 数组名[][]; 或 数据类型[][] 数组名; int scores[][]; int[][] scores;为二维数组元素分配内存 格式:数据类型 数组名[][]; 或 数据类型[][] 数组名; int scores[][]; scores …

什么是设计模式?

目录 概述: 什么是模式!! 为什么学习模式!! 模式和框架的比较: 设计模式研究的历史 关于pattern的历史 Gang of Four(GoF) 关于”Design”Pattern” 重提:指导模式设计的三个概念 1.重用(reuse)…

基于微信小程序的传染病酒店隔离平台设计与实现(Java+spring boot+MySQL+微信小程序)

获取源码或者论文请私信博主 演示视频: 基于微信小程序的传染病酒店隔离平台设计与实现(Javaspring bootMySQL微信小程序) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:…

【windows】windows上如何使用linux命令?

前言 windows上的bat命令感觉不方便,想在windows上使用linux命令。 有人提供了轮子,本文简单介绍一些该轮子的安装与使用,希望能够帮助到和我有一起需求的网友。 我的答案是busybox。 1.安装busybox.exe 在这个网站上安装busybox busyb…

两个状态的马尔可夫链

手动推导如下公式。 证明: 首先将如下矩阵对角化: { 1 − a a b 1 − b } \begin {Bmatrix} 1-a & a \\ b & 1-b \end {Bmatrix} {1−ab​a1−b​} (1)求如下矩阵的特征值: { 1 − a a b 1 − b } { x 1 x 2 } λ { x 1 x 2 }…

vscode终端背景颜色修改以及报错信息颜色修改

引言 刚从pycharm转到vscode上时,很不喜欢vscode终端信息一片白色,于是想尽办法去修改vscode终端风格 这里提供vscode终端背景颜色的修改和vscode终端报错提示信息颜色的修改方法 (1)vscode终端背景颜色优化 步骤一,ctrlshiftp打开设置搜索…

Unity-UGUI优化策略

界面出栈规则: 界面目录导航、策划界面回退需求造成界面套娃问题,夹带一系列层级问题,应该和策划进行友好沟通,避免界面不合理的出栈入栈规则 overdraw: 尽量减少同屏 半透明物体渲染 Unity 之 UGUI优化(…

iOS开发-JsonModel的学习及使用

IOS JsonModel的学习及使用 当我们从服务端获取到json数据后的时候,我们需要在界面上展示或者保存起来,下面来看下直接通过NSDictionary取出数据的情况。 NSDictionary直接取出数据的诟病。 NSString *name [self.responseObj objectForKey:"nam…

github上有哪些值得读源码的react项目?

前言 下面是我整理的关于值得一读源码的react项目,希望对你有所帮助~ 1、 calcom Star: 21.6k calcom是一个开源的计算器应用程序。它提供了基本的数学运算功能,例如加法、减法、乘法和除法,还支持 科学计算、进制转换和单位转换等高级功能…

vmwera中安装的centos8出现ifconfig不可用

刚刚在虚拟机中装好centos结果发现自己的ifconfig命令不可用。 看一下环境变量里有没有ifconfig命令的路径,因为ifconfig是在/sbin路径下的,root用户登录进去才可以运行,先看一下root用户的环境变量。 root用户的环境变量里是有/sbin路径的&a…

java.lang.ClassNotFoundException: com.mysql.cj.jdbc.Driver的解决办法

springcloudAlibaba项目连接mysql时(mysql版本8.0.31,Springboot2.2.2,spring cloud Hoxton.SR1,spring cloud alibaba 2.1.0.RELEASE),驱动名称报红,配置如下: 原因:引入的jdbc驱动包和使用的m…

pytest fixture 用于teardown工作

fixture通过scope参数控制setup级别,setup作为用例之前前的操作,用例执行完之后那肯定也有teardown操作。这里用到fixture的teardown操作并不是独立的函数,用yield关键字呼唤teardown操作。 举个例子: 输出: 说明&…

MongoDB文档-基础使用-在客户端(dos窗口)/可视化工具中使用MongoDB基础语句

阿丹: 本文章将描述以及研究mongodb在客户端的基础应用以及在spring-boot中整合使用mongodb来完成基本的数据增删改查。 传送门: MongoDB文档--基本概念_一单成的博客-CSDN博客 MongoDB文档--基本安装-linux安装(mongodb环境搭建&#xff0…