TypeScript 关于对【泛型】的定义使用解读

目录

    • 概念导读
    • 泛型函数
    • 多个泛型参数
    • 泛型约束
    • 泛型别名
    • 泛型接口
    • 泛型类
    • 总结:


概念导读

泛型(Generics)是指在定义函数、接口或类的时候,不预先指定具体的类型,而在使用的时候再指定类型的一种特性。使用泛型 可以复用类型并且让类型更加灵活

在这里插入图片描述
泛型实现类型参数化:

在定义这个函数时, 我不决定这些参数的类型
而是让调用者以参数的形式告知,我这里的函数参数应该是什么类型
把类型作为参数,放在尖括号中

泛型的基本使用

案例讲解:

当我们封装一个函数的时候,可能由于业务需求的不同,向函数内,传递的参数类型也不相同。而TS 的语法规范是,在函数定义的时候就需要为每个待接收的形参以及函数的返回值指定类型,如果在我们调用执行函数之前,就将类型给指定死了的话,这就大大降低了,函数的复用性了。


这时候,就可以使用 泛型,来实现这样的需求,将函数所需参数的类型,延后到,当我调用函数的时候,可以根据不同的业务需求再指定其参数类型。这样一来,将大大的提高函数的复用灵活性。


如下案例:

泛型函数

普通函数定义法

function createArray<T>(length: number, value: T): Array<T> {let result: T[] = [];for (let i = 0; i < length; i++) {result[i] = value;}return result;
}createArray(3, 'x'); // ['x', 'x', 'x']

箭头函数定义法

let append = <T>(val: T, num: number): Array<T> => {const arr: T[] = []for (let index = 0; index < num; index++) {arr.push(val)}return arr;
}
console.log(append<string>("一段字符串", 9));
//['一段字符串', '一段字符串', '一段字符串', '一段字符串', '一段字符串', '一段字符串', '一段字符串', '一段字符串', '一段字符串']
console.log(append<number>(10086, 9));
//[10086, 10086, 10086, 10086, 10086, 10086, 10086, 10086, 10086]

我们在函数名后添加了 < T >,其中 T 用来指代任意输入的类型(泛型),后面的参数类型,以及函数返回值的类型,都可以 使用 T 泛型来定义站位。
console.log(append< string >("一段字符串", 9)); 在函数调用的时候再为其指定泛型所具体代表的类型,也可以不手动指定,而让类型推论自动推算出来(推荐手动指定,使其代码更加清晰明了)


多个泛型参数

定义泛型的时候,可以一次定义多个类型参数,同样的在调用的时候再为其指定参数类型,多泛型参数多用于元组类型的数据处理

普通函数写法:

function swap<T, U>(tuple: [T, U]): [U, T] {return [tuple[1], tuple[0]];
}console.log(swap<number, string>([7, 'seven']));

箭头函数写法:

let swap = <T, U>(tuple: [T, U]): [U, T] => {return [tuple[1], tuple[0]];
}console.log(swap<string, number>(["字符串", 100]));

泛型约束

由于泛型,表示数据的类型的待定的,由于事先不知道它是哪种类型,所以不能够随意操作一个待定数据类型身上的方法属性,如果传进来的数据类型没有这个属性方法,则就会引起报错。

如下案例:

function loggingIdentity<T>(arg: T): T {console.log(arg.length);return arg;
}// 报错:  index.ts(2,19): error TS2339: Property 'length' does not exist on type 'T'.

上例中,泛型 T 不一定包含属性 length,所以编译的时候报错了。

这时候,我们就可以通过接口对泛型进行约束,只允许这个函数传入那些包含 length 属性的变量。这就是泛型约束:

interface Lengthwise {length: number;
}function loggingIdentity<T extends Lengthwise>(arg: T): T {console.log(arg.length);return arg;
}

上例中我们使用了 extends 约束了泛型 T 必须符合接口 Lengthwise 的形状,也就是必须包含 length 属性。

此时如果调用 loggingIdentity 函数的时候,传入的 arg 数据类型身上 不包含 length 属性,那么在编译阶段就会报错了,这样一来就大大降低了,会发生在函数体内部的错误了

补充

多个类型的参数之间也可以互相约束

function copyFields<T extends U, U>(target: T, source: U): T {for (let id in source) {target[id] = (<T>source)[id];}return target;
}let x = { a: 1, b: 2, c: 3, d: 4 };copyFields(x, { b: 10, d: 20 });

上例中,我们使用了两个类型参数,其中要求 T 继承 U,也相当于,U 约束了 T ,这样就保证了 U 上不会出现 T 中不存在的字段。


泛型别名

在类型别名 type 的后面使用<T>即可声明一个泛型参数,接口里的其他成员都能使用该参数的类型

type len = {length: number
}let fun = <T extends len>(x: T): number => {return x.length
}
console.log(fun<string>("486789413"));//9

泛型接口

前面提到过, interface 是我们在使用 TypeScript 的时候,用来定义接口的关键字。

如:

interface Person {name: string;age: number;
}
const dome: Person = {name: "sunny",age: 18,
};

上面示例的代码中用声明接口限制了一个对象,我们也可以通过泛型对我们的接口进行改造

在这里插入图片描述

这时候我们通过定义泛型的方式,定义 T ,U 两个占位符,使得我们的接口具备了泛型,更加灵活。但是我们发现 泛型接口和泛型函数不一样,像上图中这样使用,有一个地方报错了,提示我们需要传入类型参数,而不能依赖自动的类型推断,来确实对象属性的类型,其实这也是可以理解,因为我们对一个对象的限制,主要就是限制对象的属性类型,如果我们不确定类型,那我们传入的一切类型都是有效的了。就起不到类型的限制,而前面我们使用泛型函数,虽然没有显示声明类型,但是我们达到了对函数入参和出参进行了统一。

interface Person<T, U> {name: T;age: U;
}
const dome: Person<string, number> = {name: "sunny",age: 18,
};

所以定义泛型接口的时候,正确的写法应该是 对其传入了两个确定的类型。T,U的类型也因此确定了。

泛型接口来约束函数:

interface Person<T> {(value: T): Array<T>
}const printFun: Person<string> = <T>(value: T): Array<T> => {let arr: T[] = [];arr.push(value)return arr;
};
console.log(printFun("233")); //['233']

泛型类

与泛型接口类似,泛型也可以用于类的类型定义中:

class information<T, U>{name: Tage: Uconstructor(name: T, age: U) {this.name = name;this.age = age}
}
let c =  new information<string, number>("张三", 48)

泛型参数的默认类型

在 TypeScript 2.3 以后,我们可以为泛型中的类型参数指定默认类型。当使用泛型时没有在代码中直接指定类型参数,从实际值参数中也无法推测出时,这个默认类型就会起作用。

class information<T = string, U = number>{name: Tage: Uconstructor(name: T, age: U) {this.name = name;this.age = age}
}
let c = new information("李四", 25)

总结:

泛型德优势是什么?

增加类型的复用性和灵活性。

泛型实现的基本方法是什么?

  • 找到不确定类型的部分,为其定义泛型参数
  • 传入参数时,为泛型指定具体的类型

泛型约束的作用是什么?

既可以,保留泛型的灵活性,又限制了一定的规范。


注明:在正式开发中,泛型的使用场景非常多…


🚵‍♂️ 博主座右铭:向阳而生,我还在路上!
——————————————————————————————
🚴博主想说:将持续性为社区输出自己的资源,同时也见证自己的进步!
——————————————————————————————
🤼‍♂️ 如果都看到这了,博主希望留下你的足迹!【📂收藏!👍点赞!✍️评论!】
——————————————————————————————

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/90866.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++入门

目录 一&#xff1a;关键字 二&#xff1a;命名空间 1.引入 2.命名空间的定义 <1>:命名空间中定义变量/函数/类型 <2>:命名空间可以嵌套 <3>:同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中 3.命名空…

【设计模式】建造者模式

建造者模式&#xff08;Builder Pattern&#xff09;使用多个简单的对象一步一步构建成一个复杂的对象。这种类型的设计模式属于创建型模式&#xff0c;它提供了一种创建对象的最佳方式。 一个 Builder 类会一步一步构造最终的对象。该 Builder 类是独立于其他对象的。 介绍 …

idea入门与maven配置的一些介绍

idea入门与maven配置的一些介绍 1.确保Java和Maven已安装2.创建一个新的Maven项目3.导航到要创建项目的目录配置Maven4.配置项目的pom.xml文件5.配置其他Tomcat和设置jdk6.构建和运行项目 关于idea入门基础配置 步骤1&#xff1a;安装IntelliJ IDEA 首先&#xff0c;从IntelliJ…

【Vue-Router】命名视图

命名视图 同时 (同级) 展示多个视图&#xff0c;而不是嵌套展示&#xff0c;例如创建一个布局&#xff0c;有 sidebar (侧导航) 和 main (主内容) 两个视图&#xff0c;这个时候命名视图就派上用场了。 可以在界面中拥有多个单独命名的视图&#xff0c;而不是只有一个单独的出…

JVM内存区域划分

JVM把虚拟机的内存区域划分为方法区&#xff08;Method Area&#xff09;、堆&#xff08;Heap&#xff09;、栈&#xff08;Java Stack&#xff09;、本地方法栈&#xff08;Native Method Stack&#xff09;、和一个PC寄存器&#xff08;程序计数器&#xff0c;Progam Counti…

msvcp140.dll如何重新安装?快速安装msvcp140.dll的方法分享

msvcp140.dll是Windows操作系统的一个动态链接库文件&#xff0c;它是Microsoft Visual C Redistributable的一部分。这个文件在运行某些应用程序时非常重要。然而&#xff0c;在某些情况下&#xff0c;msvcp140.dll文件可能会损坏或遗失&#xff0c;导致应用程序无法正常运行。…

神经网络基础-神经网络补充概念-03-逻辑回归损失函数

概念 逻辑回归使用的损失函数通常是"对数损失"&#xff08;也称为"交叉熵损失"&#xff09;或"逻辑损失"。这些损失函数在训练过程中用于衡量模型预测与实际标签之间的差异&#xff0c;从而帮助模型逐步调整权重参数&#xff0c;以更好地拟合数…

堆的实现以及应用

&#x1f493;博主个人主页:不是笨小孩&#x1f440; ⏩专栏分类:数据结构与算法&#x1f440; 刷题专栏&#x1f440; C语言&#x1f440; &#x1f69a;代码仓库:笨小孩的代码库&#x1f440; ⏩社区&#xff1a;不是笨小孩&#x1f440; &#x1f339;欢迎大家三连关注&…

Unity zSpace 开发

文章目录 1.下载 zSpace 开发环境1.1 zCore Unity Package1.2 zView Unity Package 2. 导入工程3. 发布设置4.功能实现4.1 用触控笔来实现对模型的拖拽&#xff1a; 5. 后续更新 1.下载 zSpace 开发环境 官网地址 1.1 zCore Unity Package zSpace 开发核心必须 1.2 zView …

K8S系列三:单服务部署

写在前面 本文是K8S系列第三篇&#xff0c;主要面向对K8S新手同学&#xff0c;阅读本文需要读者对K8S的基本概念&#xff0c;比如Pod、Deployment、Service、Namespace等基础概念有所了解。尚且不熟悉的同学推荐先阅读本系列的第一篇文章《K8S系列一&#xff1a;概念入门》[1]…

图解 Paxos 算法

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱写博客的嗯哼&#xff0c;爱好Java的小菜鸟 &#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44d;三连支持&#x1f44d;一下博主哦 &#x1f4dd;个人博客&#xff1a;敬请期待 &#x1f4d5;系列…

ROS学习笔记(二)---使用 VScode 开发 ROS 的Python程序(简例)

一、任务介绍 本篇作为ROS学习的第二篇&#xff0c;是关于如何在Ubuntu18.04中使用VSCode编写一个Python程序&#xff0c;输出“Hello&#xff01;”的内容介绍。 首先我们来了解下ROS的文件系统&#xff0c;ROS文件系统级指的是在硬盘上ROS源代码的组织形式&#xff0c;其结构…

东方晶源亮相第十一届半导体设备年会,共话发展“芯”机遇

8月11日&#xff0c;以“协力同芯抢机遇&#xff0c;集成创新造设备”为主题的第十一届&#xff08;2023年&#xff09;中国电子专用设备工业协会半导体设备年会暨产业链合作论坛&#xff08;CSEAC&#xff09;在无锡太湖国际博览中心圆满闭幕。为期3天的CSEAC&#xff0c;通过…

安装Linux操作系统CentOS 6详细图文步骤

为满足业务对Linux操作系统部署的要求&#xff0c;本文档主要提供CentOS 6操作系统的最小化安装和基本配置, 安装本系统建议最少1GB内存和2GB磁盘空间。 1、 使用光盘或者挂载ISO镜像&#xff0c;在出现如下图形界面时选择【Install or upgrade an existing system】并按Ent…

Redis 缓存过期及删除

一、Redis缓存过期策略 物理内存达到上限后&#xff0c;像磁盘空间申请虚拟内存(硬盘与内存的swap),甚至崩溃。 内存与硬盘交换 (swap) 虚拟内存&#xff0c;频繁I0 性能急剧下降&#xff0c;会造成redis内存急剧下降&#xff1b; 一般设置物理内存的3/4&#xff0c;在redis…

【C/C++】STL queue 非线程安全接口,危险!

STL 中的 queue 是非线程安全的&#xff0c;一个组合操作&#xff1a;front(); pop() 先读取队首元素然后删除队首元素&#xff0c;若是有多个线程执行这个组合操作的话&#xff0c;可能会发生执行序列交替执行&#xff0c;导致一些意想不到的行为。因此需要重新设计线程安全的…

每天一道leetcode:剑指 Offer 13. 机器人的运动范围(中等广度优先遍历剪枝)

今日份题目&#xff1a; 地上有一个m行n列的方格&#xff0c;从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0]的格子开始移动&#xff0c;它每次可以向左、右、上、下移动一格&#xff08;不能移动到方格外&#xff09;&#xff0c;也不能进入行坐标和列坐标的数位之…

jmeter返回值中的中文显示为????问号处理解决方案

jmeter返回值中的中文显示为????问号 查找解决方案时&#xff0c;发现了以下两种解决方案&#xff1a; 一、1.打开jmter配置文件bin/jmeter.properties 2.修改配置文件&#xff0c;查找“sampleresult.default.encoding”将其改为utf8&#xff0c;注意要去掉“#”号 sample…

opencv带GStreamer之Windows编译

目录 1、下载GStreamer和安装2. GSTReamer CMake配置3. 验证是否配置成功 1、下载GStreamer和安装 下载地址如下&#xff1a; gstreamer-1.0-msvc-x86_64-1.18.2.msi gstreamer-1.0-devel-msvc-x86_64-1.18.2.msi 安装目录无要求&#xff0c;主要是安装完设置环境变量 xxx\1…

CVPR 2023 | 用户可控的条件图像到视频生成方法(基于Diffusion)

注1:本文系“计算机视觉/三维重建论文速递”系列之一&#xff0c;致力于简洁清晰完整地介绍、解读计算机视觉&#xff0c;特别是三维重建领域最新的顶会/顶刊论文(包括但不限于 Nature/Science及其子刊; CVPR, ICCV, ECCV, NeurIPS, ICLR, ICML, TPAMI, IJCV 等)。 本次介绍的论…