二叉树-堆(补充)

二叉树-堆

  • 1.二叉树的基本特性
  • 2.堆
    • 2.1.堆的基本概念
    • 2.2.堆的实现
      • 2.2.1.基本结构
      • 2.2.2.堆的初始化
      • 2.2.3.堆的销毁
      • 2.2.4.堆的插入
      • 2.2.5.取出堆顶的数据
      • 2.2.6.堆的删除
      • 2.2.7.堆的判空
      • 2.2.8.堆的数据个数
      • 2.2.9.交换
      • 2.2.10.打印堆数据
      • 2.2.11.堆的创建
      • 2.2.12.堆排序
      • 2.2.13.完整代码
  • 3.Top-K问题

🌟🌟hello,各位读者大大们你们好呀🌟🌟
🚀🚀系列专栏:【数据结构的学习】
📝📝本篇内容:二叉树的基本特性;堆;堆的基本概念;堆的实现;堆的初始化;堆的销毁;堆的插入;取出堆顶的数据;堆的删除;堆的判空;堆的数据个数;交换;打印堆数据;堆的创建;堆排序;完整代码;Top-K问题
⬆⬆⬆⬆上一篇:二叉树(三)
💖💖作者简介:轩情吖,请多多指教(> •̀֊•́ ) ̖́-

1.二叉树的基本特性

在这里插入图片描述
上图展示的就是二叉树,我将它的规律也写在上面了
一般我们把二叉树的高度设置从1开始,从0开始的话,空树就是-1,就不太合适了
一棵N个结点的树有N-1条边
假设二叉树的第k层是满的,它的结点数为2^(k-1)个
我们的二叉树还分为满二叉树完全二叉树,下图展示了二者的对比图
在这里插入图片描述
满二叉树:一个二叉树,如果每一层的结点都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为k,且结点总数是2^k-1,则就是满二叉树。
完全二叉树:前N-1层是满的,最后一层可以不满,但是必须从左往右是连续的,满二叉树是一种特殊的完全二叉树。
我们先来分析一下满二叉树的特性:
假设满二叉树有k层,则它的最后一层的结点有2^(k-1)个
假设满二叉树有k层,一棵满二叉树一共有2^k-1个结点,计算方法如下:

在这里插入图片描述
其实还有一个小技巧:我们的二进制的每一位的值和二叉树的每一层的结点数相等的,假设我们的二进制为11111111,它是一个unsigned char类型的最大值,此时我们计算它的十进制就通过它的再高一位的值-1计算得出,即2^8-1=255。类比到二叉树,即下一层的结点数-1,设最后一层的结点个数为2 ^3,第4层,计算整棵二叉树的结点数为2 ^4-1。

设满二叉树的总结点数为N个,树的高度为log₂(N+1),通过2^k-1=N计算可得
完全二叉树的特性:
设完全二叉树有k层,完全二叉树总共结点最少就是最后一层只有一个,即2^(k-1)个;最多也就是满二叉树,即2 ^k-1个结点

最多不用讲怎么计算了,最少可以用之前讲的错位相减法来计算,也可以二叉树的规律来算:假设完全二叉树一共k层;那么根据前面讲的,除去最后一层一个结点,它就是一棵满二叉树,共k-1层,根据满二叉树的总共结点公式,总结点数为2^ (k-1)-1个;那么再加上去掉的一个结点,完全二叉树的总结点数即为2^(k-1)个,如下图
在这里插入图片描述
对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为n2,则有n2=n0+1

2.堆

2.1.堆的基本概念

接下来讲的堆是二叉树的一种存储方式,从逻辑结构(想象的结构)上看我们的堆是一棵完全二叉树,从存储结构上看堆是数组
我们的堆还分为大根堆(大堆)和小根堆(小堆)
大堆:父结点大于等于孩子结点,并且子树也同样的,大堆的根结点在整个堆中是最大的元素
大堆:父结点小于等于孩子结点,并且子树也同样的,小堆的根结点在整个堆中是最小的元素
在这里插入图片描述
在这里插入图片描述
之所以我们我们的数组只能表示完全二叉树,是因为不是完全二叉树会有空间浪费,如下图
在这里插入图片描述
并且我们的堆是数组存储还有一个特性:
对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
在这里插入图片描述

2.2.堆的实现

2.2.1.基本结构

//Heap.h
#define _CRT_SECURE_NO_WARNINGS 1
#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
typedef int T;//堆数据类型typedef struct Heap
{T* arr;//堆的存储位置int size;//堆的数据个数int capacity;//堆的容量
}Heap;void HeapInit(Heap* heap);//堆的初始化
void HeapCreate1(Heap* heap, T* a, int n);//创建堆方法1
void HeapCreate2(Heap* heap, T* a, int n);//创建堆方法2
void HeapDestory(Heap* heap);//将堆销毁
void HeapPush(Heap* heap,T x);//堆的构建
void HeapPrint(Heap* heap);//将堆数据打印出来
T HeapTop(Heap* heap);//取出堆顶数据
void HeapPop(Heap* heap);//删除堆顶数据
int HeapSize(Heap* heap);//堆的数据个数
bool HeapEmpty(Heap* heap);//堆是否为空void swap(T* x, T* y);//交换
void AdjustUp(T* arr, int child);//向上调整
void AdjustDown(T* arr, int size, int parent);//向下调整void HeapSort(int* arr,int n);//堆排序

上述代码已经将存储堆的结构体已经写好,同时把我们的堆的各种函数调用已经声明好了

2.2.2.堆的初始化

void HeapInit(Heap* heap)//堆的初始化
{assert(heap);heap->arr = NULL;heap->capacity = heap->size = 0;
}

我们这边的写法是一开始不给数组任何的空间,后期直接使用realloc开辟

2.2.3.堆的销毁

void HeapDestory(Heap* heap)//将堆销毁
{assert(heap);free(heap->arr);//释放空间heap->size = heap->capacity = 0;
}

不要忘记释放开辟的空间!!!

2.2.4.堆的插入

由于我们数组的特性,头插需要移动元素什么的,效率极低,但是可以尾插,所以说堆一般性就都是在尾部插入

//我们默认建立大堆哈
void AdjustUp(T* arr,int child)//向上调整
{int parent = (child - 1) / 2;//找父结点//使用parent>=0有点不合理,倒数第二次运行循环时child已经是0了,应该结束//但是(child-1)/2导致parent依旧为0,再次进入循环,然后通过else中的breakwhile (child>0){//孩子结点大于父结点if (arr[child] > arr[parent]){//交换swap(&arr[child], &arr[parent]);//继续向上调整child = parent;parent = (child - 1) / 2;}else{//如果孩子结点小于父结点,就不用向上调整了break;}}
}void HeapPush(Heap* heap, T x)//堆的插入
{assert(heap);//空间不足开辟内存if (heap->size == heap->capacity){int newcapacity = heap->capacity == 0 ? 4 : heap->capacity * 2;//realloc的第一个元素是NULL的话,功能和malloc一样T* newarr = (T*)realloc(heap->arr, newcapacity*sizeof(T));if (newarr == NULL){perror("realloc fail");exit(-1);}//修改已经开辟好空间后的信息heap->arr = newarr;//realloc可能不在原位扩容,所以说这一步是必要的heap->capacity = newcapacity;}//正式插入heap->arr[heap->size] = x;heap->size++;//数据个数+1//向上调整,保证是一个堆AdjustUp(heap->arr, heap->size - 1);
}

我们默认建立的是大堆哈,如果想要建立小堆,只需要将向上调整中的比较孩子结点和父结点的>变成<即可
在这里插入图片描述
代码和图片也展示在了上面,可以通过图片来理解一下,之所以这样写是因为我们在没有进行插入前,我们的结构肯定是堆的,但是插入后,我们需要进行调整才能保证堆的结构,我们写的是大堆,
因此需要和父结点进行比较,如果比父结点大,那么继续交换。但是由于交换后,可能还是比祖父结点大,也就还需要不停地调整。向上调整是对插入结点的祖先进行调整

2.2.5.取出堆顶的数据

T HeapTop(Heap* heap)//取出堆顶数据
{	assert(heap);assert(heap->size > 0);return heap->arr[0];
}

我们的可以用于Top-k问题,举个例子,我们在10000个人里面,选出最有钱的人,我们的堆就发挥了大用处,因为它的堆顶的数据,即数组第一个元素是最大(最小)的,我们只需要取出后,再删除就可以选出第二大的…第n大的,因此我们还需要来实现一下删除才能彻底理解

2.2.6.堆的删除

void AdjustDown(T* arr, int size,int parent)
{//选出左孩子和右孩子中较大的那个//假设较大的是左孩子int child = parent * 2 + 1;//孩子结点存在才向下调整while (child<size){if (child + 1 < size && arr[child + 1] > arr[child]){//进行判断,如果右孩子大于左孩子,就+1,因为左孩子和右孩子之间就相差1child++;}//孩子结点大于父节点,就需要交换,保证大堆的特性if (arr[child] > arr[parent]){swap(&arr[child], &arr[parent]);//继续向下调整parent = child;child = parent * 2 + 1;}else{//如果孩子结点小于父结点,说明不需要调整了,跳出循环break;}}}void HeapPop(Heap* heap)//删除堆顶数据
{assert(heap);assert(heap->size>0);//先将堆顶的元素和最后一个元素进行交换swap(&heap->arr[0], &heap->arr[heap->size - 1]);//堆数据个数-1heap->size--;//向下调整AdjustDown(heap->arr,heap->size,0);
}

在这里插入图片描述
上面已经给出了代码和交换的图片,我们首先来讲一下为什么需要通过交换才能删除这个最大(最小)元素,究其原因还是它在根节点的原因,没有办法对它进行一个直接删除,一旦直接删除,就会导致整体的一个堆结构就乱掉了。我们根结点的左子树和右子树是堆,不能破坏它,那么最好的方法就是和尾元素进行交换,然后进行向下调整,这样不但保证了结构的完整性,效率还高。
向下调整如下图:
在这里插入图片描述

2.2.7.堆的判空

bool HeapEmpty(Heap* heap)//堆是否为空
{assert(heap);return heap->size == 0;
}

2.2.8.堆的数据个数

int HeapSize(Heap* heap)//堆的数据个数
{assert(heap);return heap->size;
}

2.2.9.交换

void swap(T* x, T* y)//交换
{T tmp = *x;*x = *y;*y = tmp;
}

2.2.10.打印堆数据

void HeapPrint(Heap* heap)//将堆数据打印出来
{for (int i = 0; i < heap->size; ++i){printf("%d ", heap->arr[i]);}printf("\n");
}

2.2.11.堆的创建

//简单粗暴的一种方法
void HeapCreate1(Heap* heap, T* a, int n)//创建堆1
{assert(heap);HeapInit(heap);for (int i = 0; i < n; i++){HeapPush(heap, a[i]);}
}void AdjustDown(T* arr, int size, int parent);//定义在下面,这边要使用,声明一下void HeapCreate2(Heap* heap, T* a, int n)//创建堆2
{assert(heap);HeapInit(heap);//开辟空间heap->arr = (T*)malloc(sizeof(T) * n);if (heap->arr == NULL){perror("malloc fail");exit(-1);}//拷贝数据memcpy(heap->arr, a, n*sizeof(T));heap->size = heap->capacity = n;//从下至上进行向下调整for (int end = (n - 1 - 1) / 2; end >= 0; end--){AdjustDown(heap->arr, n, end);}
}

在这里插入图片描述

上面展示了代码和图片,堆的创建我们用了两种方法,第一种就比较直接,循环push即可,但它的效率不是很高,于是我们有了第二种方法,想要保证一组毫无序列的元素变成堆,就需要保证每一个子树的父节点都大于(小于)孩子节点,因此我们只能从最后一棵子树开始向下调整(叶子结点不需要调整了),这样当调整到上一层时,下层都已经是堆了,只需要对当前节点也是向下调整即可。一直到根节点完成最后一次向下调整就可以完成堆的构建。
在代码中end两次-1,第一次-1是为了找到最后一个元素在数组中的位置,第二次-1是为了找到父结点。

2.2.12.堆排序

在我们讲述堆排序前,我们先来讨论一下,当我们对于一个随机的数组,将它变成一个堆,是使用向上调整好还是向下调整好呢?我们接下来分析一下
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以看到,向下调整和向上调整都能建堆,如果简单来看的话会认为向上调整的时间复杂度是都是O(N*logN),而向下调整就有点难以看出来了,我们来计算一下
在这里插入图片描述
我们的向下调整在前面的代码中已经演示过了,它从最后一个结点的父结点开始调整,并且我们要验证它的时间复杂度就得使用最坏的情况,就是满二叉树。根据上图的详细计算可以得出向下调整的时间复杂度是O(N)
接下来再来看一下,向上调整的时间复杂度计算
在这里插入图片描述
上图为向上调整的计算过程,通过规律,我们很快就算了出来,可以发现向上调整的时间复杂度是O(N *log₂N)。其实我们仔细观察一下,可以发现我们的向上调整次数其实都是聚集在最后一层,最后一层不但结点是整棵二叉树中最多的,调整次数也是最多的;反观向下调整中,结点越是在上面,调整次数越多,但结点越少,反倒是最后一层,并没有进行调整,这就是造成两者时间复杂度差距的原因,因此我们在选择调整时,优先选择向下调整

void HeapSort(int* arr,int n)//堆排序
{//向上调整--O(N*logN)/*for (int i = 0; i < n; i++){AdjustUp(arr, i);}*///向下调整--O(N)for (int i =(n-1-1)/2; i>=0; i--){AdjustDown(arr, n,i);}//堆排序-升序-使用大堆int end = n-1;while (end > 0)//当end==0时说明调整结束{swap(&arr[0],&arr[end]);AdjustDown(arr, end, 0);end--;}}

在这里插入图片描述

接下来就可以看我们的堆排序的代码和图片,其中我们升序时需要使用大堆,降序时使用小堆,我们通过交换+向下调整,将数据依次从数组尾部开始放,这其实就是借鉴了我们的将堆内的top数据取出再pop的思想,并且我们的这个排序只需要写向下调整的代码即可,不需要完整的把堆代码写完。
我们可以看一下如果使用top+pop函数也能达到类似排序效果
在这里插入图片描述
在这里插入图片描述
我们接下来再看一下堆排序的时间复杂度
在这里插入图片描述
经过上面的分析,就可以知道一开始建堆向下调整的时间复杂度是O(N),循环交换+向下调整的时间复杂度是O(N*log₂N),那么根据时间复杂度的计算方式,堆排序的时间复杂度为O(N*log₂N)

2.2.13.完整代码

//Heap.h
#define _CRT_SECURE_NO_WARNINGS 1
#pragma once
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
typedef int T;//堆数据类型typedef struct Heap
{T* arr;//堆的存储位置int size;//堆的数据个数int capacity;//堆的容量
}Heap;void HeapInit(Heap* heap);//堆的初始化
void HeapCreate1(Heap* heap, T* a, int n);//创建堆方法1
void HeapCreate2(Heap* heap, T* a, int n);//创建堆方法2
void HeapDestory(Heap* heap);//将堆销毁
void HeapPush(Heap* heap,T x);//堆的构建
void HeapPrint(Heap* heap);//将堆数据打印出来
T HeapTop(Heap* heap);//取出堆顶数据
void HeapPop(Heap* heap);//删除堆顶数据
int HeapSize(Heap* heap);//堆的数据个数
bool HeapEmpty(Heap* heap);//堆是否为空void swap(T* x, T* y);//交换
void AdjustUp(T* arr, int child);//向上调整
void AdjustDown(T* arr, int size, int parent);//向下调整void HeapSort(int* arr,int n);//堆排序
//Heap.c
#define _CRT_SECURE_NO_WARNINGS 1
#include "Heap.h"
void HeapInit(Heap* heap)//堆的初始化
{assert(heap);heap->arr = NULL;heap->capacity = heap->size = 0;
}//简单粗暴的一种方法
void HeapCreate1(Heap* heap, T* a, int n)//创建堆1
{assert(heap);HeapInit(heap);for (int i = 0; i < n; i++){HeapPush(heap, a[i]);}
}void AdjustDown(T* arr, int size, int parent);//定义在下面,这边要使用,声明一下void HeapCreate2(Heap* heap, T* a, int n)//创建堆2
{assert(heap);HeapInit(heap);//开辟空间heap->arr = (T*)malloc(sizeof(T) * n);if (heap->arr == NULL){perror("malloc fail");exit(-1);}//拷贝数据memcpy(heap->arr, a, n*sizeof(T));heap->size = heap->capacity = n;//从下至上进行向下调整for (int end = (n - 1 - 1) / 2; end >= 0; end--){AdjustDown(heap->arr, n, end);}
}void HeapDestory(Heap* heap)//将堆销毁
{assert(heap);free(heap->arr);//释放空间heap->size = heap->capacity = 0;
}void swap(T* x, T* y)//交换
{T tmp = *x;*x = *y;*y = tmp;
}//我们默认建立大堆哈
void AdjustUp(T* arr,int child)//向上调整
{int parent = (child - 1) / 2;//找父结点//使用parent>=0有点不合理,倒数第二次运行循环时child已经是0了,应该结束//但是(child-1)/2导致parent依旧为0,再次进入循环,然后通过else中的breakwhile (child>0){//孩子结点大于父结点if (arr[child] > arr[parent]){//交换swap(&arr[child], &arr[parent]);//继续向上调整child = parent;parent = (child - 1) / 2;}else{//如果孩子结点小于父结点,就不用向上调整了break;}}
}void HeapPush(Heap* heap, T x)//堆的插入
{assert(heap);//空间不足开辟内存if (heap->size == heap->capacity){int newcapacity = heap->capacity == 0 ? 4 : heap->capacity * 2;//realloc的第一个元素是NULL的话,功能和malloc一样T* newarr = (T*)realloc(heap->arr, newcapacity*sizeof(T));if (newarr == NULL){perror("realloc fail");exit(-1);}//修改已经开辟好空间后的信息heap->arr = newarr;//realloc可能不在原位扩容,所以说这一步是必要的heap->capacity = newcapacity;}//正式插入heap->arr[heap->size] = x;heap->size++;//数据个数+1//向上调整,保证是一个堆AdjustUp(heap->arr, heap->size - 1);
}void HeapPrint(Heap* heap)//将堆数据打印出来
{for (int i = 0; i < heap->size; ++i){printf("%d ", heap->arr[i]);}printf("\n");
}T HeapTop(Heap* heap)//取出堆顶数据
{	assert(heap);assert(heap->size > 0);return heap->arr[0];
}void AdjustDown(T* arr, int size,int parent)
{//选出左孩子和右孩子中较大的那个//假设较大的是左孩子int child = parent * 2 + 1;//孩子结点存在才向下调整while (child<size){if (child + 1 < size && arr[child + 1] > arr[child]){//进行判断,如果右孩子大于左孩子,就+1,因为左孩子和右孩子之间就相差1child++;}//孩子结点大于父节点,就需要交换,保证大堆的特性if (arr[child] > arr[parent]){swap(&arr[child], &arr[parent]);//继续向下调整parent = child;child = parent * 2 + 1;}else{//如果孩子结点小于父结点,说明不需要调整了,跳出循环break;}}}void HeapPop(Heap* heap)//删除堆顶数据
{assert(heap);assert(heap->size>0);//先将堆顶的元素和最后一个元素进行交换swap(&heap->arr[0], &heap->arr[heap->size - 1]);//堆数据个数-1heap->size--;//向下调整AdjustDown(heap->arr,heap->size,0);
}int HeapSize(Heap* heap)//堆的数据个数
{assert(heap);return heap->size;
}bool HeapEmpty(Heap* heap)//堆是否为空
{assert(heap);return heap->size == 0;
}void HeapSort(int* arr,int n)//堆排序
{//向上调整--O(N*logN)/*for (int i = 0; i < n; i++){AdjustUp(arr, i);}*///向下调整--O(N)for (int i =(n-1-1)/2; i>=0; i--){AdjustDown(arr, n,i);}//堆排序-升序-使用大堆int end = n-1;while (end > 0)//当end==0时说明调整结束{swap(&arr[0],&arr[end]);AdjustDown(arr, end, 0);end--;}}
//main.c
#define _CRT_SECURE_NO_WARNINGS 1
#include "Heap.h"
//验证Push能否正常工作
void Test1()
{Heap heap;HeapInit(&heap);int array[] = { 27, 15, 19, 18, 28, 34, 65, 49, 25, 37 };for (int i = 0; i < sizeof(array) / sizeof(T); i++){HeapPush(&heap,array[i]);}HeapPrint(&heap);
}//验证能否正常使用Pop并模拟排序
void Test2()
{Heap heap;HeapInit(&heap);int array[] = { 27, 15, 19, 18, 28, 34, 65, 49, 25, 37 };for (int i = 0; i < sizeof(array) / sizeof(T); i++){HeapPush(&heap, array[i]);}HeapPrint(&heap);for (int i = 0; i < sizeof(array) / sizeof(T); i++){	printf("%d ", HeapTop(&heap));HeapPop(&heap);}printf("\n");
}//验证Create
void Test3()
{Heap heap;int array[] = { 27, 15, 19, 18, 28, 34, 65, 49, 25, 37 };HeapCreate2(&heap,array,sizeof(array)/sizeof(int));HeapPrint(&heap);for (int i = 0; i < sizeof(array) / sizeof(T); i++){printf("%d ", HeapTop(&heap));HeapPop(&heap);}printf("\n");
}//验证堆排序
void Test4()
{Heap heap;int array[] = { 27, 15, 19, 18, 28, 34, 65, 49, 25, 37 };HeapSort(array, sizeof(array) / sizeof(int));for (int i = 0; i < sizeof(array) / sizeof(int); i++){printf("%d ", array[i]);}
}int main()
{Test3();return 0;
}

3.Top-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
总共N个数据,用数据集合中前K个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
设求前K个最大的元素,建小堆,用剩余的N-K个元素依次与堆顶元素来比较,比堆顶大的就替换,然后进行向下调整
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素

//Top-K问题
#include <stdio.h>
#include <stdlib.h>
#include <time.h>void swap(T* x, T* y)//交换
{T tmp = *x;*x = *y;*y = tmp;
}void AdjustDown(T* arr, int size, int parent)
{//选出左孩子和右孩子中较小的那个//假设较小的是左孩子int child = parent * 2 + 1;//孩子结点存在才向下调整while (child < size){if (child + 1 < size && arr[child + 1] < arr[child]){//进行判断,如果右孩子小于左孩子,就+1,因为左孩子和右孩子之间就相差1child++;}//孩子结点小于父节点,就需要交换,保证小堆的特性if (arr[child] < arr[parent]){swap(&arr[child], &arr[parent]);//继续向下调整parent = child;child = parent * 2 + 1;}else{//如果孩子结点大于父结点,说明不需要调整了,跳出循环break;}}}int  main()
{int  k = 5;//求Top-10int n = 20;//数据数量srand((unsigned)time(NULL));//1.生成一堆随机数写入文件中//1.1打开文件FILE* fin = fopen("data.txt", "w");int flag = k;//1.2写入for (int i = 0; i < n; i++){//i%3保证是随机添加,而不是连续,flag保证添加了k个if (i % 3 == 0 && flag-- > 0){//1.3方便测试,添加几个大于等于10000的数据fprintf(fin, "%d\n", 10000+i);}else{fprintf(fin, "%d\n", rand() % 10000);}}//1.4关闭文件fclose(fin);//2.建立小堆//2.1开辟空间int* array = (int*)malloc(sizeof(int) * k);//2.2向下调整for (int i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDown(array, n, i);}//3.用剩余的N-K个元素依次与堆顶元素来比较,比堆顶大的就替换,然后进行向下调整//3.1打开文件FILE* fout = fopen("data.txt", "r");//3.2从文件读取int value = 0;while (fscanf(fout, "%d", &value) != EOF){//3.3和堆顶进行比较if (array[0] < value){array[0] = value;//3.4向下调整AdjustDown(array, k, 0);}}//3.4关闭文件fclose(fout);//4.验证结果//10000 10006 10003 10009 10012for (int i = 0; i < k; i++){printf("%d ", array[i]);}printf("\n");return 0;
}

它的时间复杂度的计算过程:前面讲的向下调整的建堆过程的时间复杂度是O(N),N是结点个数,那么代入到这,K也是结点个数(数组大小),那么建堆过程的复杂度为O(K);还需要比较+向下调整,堆的大小是K,需要调整次数为log₂K-1(-1不包含自己层,并且这里的log₂K是比较精确的,不像前面排序会改变end,导致每次调整时间复杂度逐渐减小),时间复杂度是O(log₂K),需要比较N-K次,那么总的时间复杂度就是(N-K) * log₂K。综上所述,K+(N-K) * log₂K=>Top-K时间复杂度为O(N*log₂K),空间复杂度是O(K),这个空间K是存放堆的数据的
假设有100亿整数的数据,找Top10,那么就需要100亿*4byte=400亿byte=40G(1G=1024 *1024 *1024byte≈10亿byte),对于现在的电脑来说40G还是不现实,如果以后真有了,就可以建立一个N个数的大堆,Pop个K次,依次取堆顶,那么它的时间复杂度就为O(N+log₂N *K), 建堆需要O(N),K个数据需要向下调整log₂N,这其实和堆排序的时间复杂度计算方式差不多,只是向下调整K次和全部调整的区别。
其实如果真的能够实现40G的内存的话,两个的时间复杂度差不多,O(N *log₂K)忽略log₂K,O(N+log₂N *K)忽略log₂N *K,都是O(N),在N这个大数量级上其实也是可以忽略的!

🌸🌸二叉树-堆的知识大概就讲到这里啦,博主后续会继续更新更多数据结构的相关知识,干货满满,如果觉得博主写的还不错的话,希望各位小伙伴不要吝啬手中的三连哦!你们的支持是博主坚持创作的动力!💪💪

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/9152.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

省市区三级联动

引言 在网页中&#xff0c;经常会遇到需要用户选择地区的场景&#xff0c;如注册表单、地址填写等。为了提供更好的用户体验&#xff0c;我们可以实现一个三级联动的地区选择器&#xff0c;让用户依次选择省份、城市和地区。 效果展示&#xff1a; 只有先选择省份后才可以选择…

【数据结构】动态内存管理函数

动态内存管理 为什么存在动态内存管理动态内存函数的介绍&#x1f38a;malloc补充&#xff1a;perror函数&#x1f38a;free&#x1f38a;calloc&#x1f38a;realloc 常见动态内存错误对空指针的解引用操作对动态开辟空间的越界访问对非动态开辟内存使用free释放使用free释放一…

【xcode 16.2】升级xcode后mac端flutter版的sentry报错

sentry_flutter 7.11.0 报错 3 errors in SentryCrashMonitor_CPPException with the errors No type named terminate_handler in namespace std (line 60) and No member named set_terminate in namespace std 替换sentry_flutter版本为&#xff1a; 8.3.0 从而保证oc的…

Julius AI 人工智能数据分析工具介绍

Julius AI 是一款由 Casera Labs 开发的人工智能数据分析工具&#xff0c;旨在通过自然语言交互和强大的算法能力&#xff0c;帮助用户快速分析和可视化复杂数据。这款工具特别适合没有数据科学背景的用户&#xff0c;使数据分析变得简单高效。 核心功能 自然语言交互&#x…

智慧园区系统集成解决方案构建智能管理新模式与发展蓝图

内容概要 在当今快速发展的科技环境中&#xff0c;智慧园区系统集成解决方案为园区的管理和运营提供了一种全新的思路。这种解决方案通过集合先进的核心技术&#xff0c;帮助各种园区实现智能化管理&#xff0c;从而提高运营效率。对于工业园、产业园、物流园、写字楼乃至公寓…

AI软件外包需要注意什么 外包开发AI软件的关键因素是什么 如何选择AI外包开发语言

1. 定义目标与需求 首先&#xff0c;要明确你希望AI智能体做什么。是自动化任务、数据分析、自然语言处理&#xff0c;还是其他功能&#xff1f;明确目标可以帮助你选择合适的技术和方法。 2. 选择开发平台与工具 开发AI智能体的软件时&#xff0c;你需要选择适合的编程语言、…

设计模式面试题

一、工厂方法模式: 1.简单工厂模式: (1).抽象产品:定义了产品的规范&#xff0c;描述了产品的主要特性和功能 (2).具体产品:实现或继承抽象产品的子类 (3).具体工厂:提供了创建产品的方法&#xff0c;调用者通过该方法来获取产品 所有产品都共有一个工厂&#xff0c;如果新…

【ESP32】ESP-IDF开发 | WiFi开发 | UDP用户数据报协议 + UDP客户端和服务器例程

1. 简介 UDP协议&#xff08;User Datagram Protocol&#xff09;&#xff0c;全称用户数据报协议&#xff0c;它是一种面向非连接的协议&#xff0c;面向非连接指的是在正式通信前不必与对方先建立连接&#xff0c; 不管对方状态就直接发送。至于对方是否可以接收到这些数据内…

react native在windows环境搭建并使用脚手架新建工程

截止到2024-1-11&#xff0c;使用的主要软件的版本如下&#xff1a; 软件实体版本react-native0.77.0react18.3.1react-native-community/cli15.0.1Android Studio2022.3.1 Patch3Android SDKAndroid SDK Platform 34 35Android SDKAndroid SDK Tools 34 35Android SDKIntel x…

浅析百度AOI数据与高德AOI数据的差异性

目录 前言 一、AOI属性数据 1、百度AOI数据 2、高德AOI数据 二、AOI矢量边界 1、百度AOI空间范围 2、高德AOI空间范围 三、数据获取频次和难易程度 1、接口限制 2、数据转换成本 四、总结 前言 在当今数字化时代&#xff0c;地理信息数据的精准性和丰富性对于城市规划…

window中80端口被占用问题

1&#xff0c;查看报错信息 可以看到在启动项目的时候&#xff0c;8081端口被占用了&#xff0c;导致项目无法启动。 2&#xff0c;查看被占用端口的pid #语法 netstat -aon|findstr :被占用端口#示例 netstat -aon|findstr :8080 3&#xff0c;杀死进程 #语法 taikkill /pid…

DeepSeek--通向通用人工智能的深度探索者

一、词源与全称 “DeepSeek"由"Deep”&#xff08;深度&#xff09;与"Seek"&#xff08;探索&#xff09;组合而成&#xff0c;中文译名为"深度求索"。其全称为"深度求索人工智能基础技术研究有限公司"&#xff0c;英文对应"De…

【学习笔记】计算机网络(二)

第2章 物理层 文章目录 第2章 物理层2.1物理层的基本概念2.2 数据通信的基础知识2.2.1 数据通信系统的模型2.2.2 有关信道的几个基本概念2.2.3 信道的极限容量 2.3物理层下面的传输媒体2.3.1 导引型传输媒体2.3.2 非导引型传输媒体 2.4 信道复用技术2.4.1 频分复用、时分复用和…

RK3588平台开发系列讲解(ARM篇)ARM64底层中断处理

文章目录 一、异常级别二、异常分类2.1、同步异常2.2、异步异常三、中断向量表沉淀、分享、成长,让自己和他人都能有所收获!😄 一、异常级别 ARM64处理器确实定义了4个异常级别(Exception Levels, EL),分别是EL0到EL3。这些级别用于管理处理器的特权级别和权限,级别越高…

BOM对象location与数组操作结合——查询串提取案例

BOM对象location与数组操作结合——查询串提取案例 前置知识 1. Location 对象 Location 对象是 JavaScript 提供的内置对象之一&#xff0c;它表示当前窗口或框架的 URL&#xff0c;并允许你通过它操作或获取 URL 的信息。可以通过 window.location 访问。 主要属性&#…

SOME/IP--协议英文原文讲解2

前言 SOME/IP协议越来越多的用于汽车电子行业中&#xff0c;关于协议详细完全的中文资料却没有&#xff0c;所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块&#xff1a; 1. SOME/IP协议讲解 2. SOME/IP-SD协议讲解 3. python/C举例调试讲解 4.1 Speci…

Fullcalendar @fullcalendar/react 样式错乱丢失问题和导致页面卡顿崩溃问题

问题描述&#xff1a; 我使用 fullcalendar的react版本时&#xff0c;出现了一个诡异的问题&#xff0c;当我切换到 一个iframe页面时&#xff08;整个页面是一个iframe嵌入的&#xff09;&#xff0c;再切换回来日历的样式丢失了&#xff01;不仅丢失了样式还导致页面崩溃了&…

基于SpringBoot的高校一体化服务平台的设计与实现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…

第3章 基于三电平空间矢量的中点电位平衡策略

0 前言 在NPC型三电平逆变器的直流侧串联有两组参数规格完全一致的电解电容,由于三电平特殊的中点钳位结构,在进行SVPWM控制时,在一个完整开关周期内,直流侧电容C1、C2充放电不均匀,各自存储的总电荷不同,电容电压便不均等,存在一定的偏差。在不进行控制的情况下,系统无…

Spring Security(maven项目) 3.0.2.9版本

前言&#xff1a; 通过实践而发现真理&#xff0c;又通过实践而证实真理和发展真理。从感性认识而能动地发展到理性认识&#xff0c;又从理性认识而能动地指导革命实践&#xff0c;改造主观世界和客观世界。实践、认识、再实践、再认识&#xff0c;这种形式&#xff0c;循环往…