清风数学建模——拟合算法

拟合算法

文章目录

  • 拟合算法
      • 概念
    • 确定拟合曲线
      • 最小二乘法的几何解释
      • 求解最小二乘法
      • matlab求解最小二乘法
      • 如何评价拟合的好坏
      • 计算拟合优度的代码

概念

在前面的篇幅中提到可以使用插值算法,通过给定的样本点推算出一定的曲线从而推算出一些想要的值。但存在一些问题。一是若样本点过多,那么多项式的次数过高会造成龙格现象;二是为了避免龙格现象而通过分段的思想求得拟合曲线,但这样会导致曲线函数非常复杂。

针对以上问题,在拟合问题中,不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线),而该函数尽可能设置得较为简单,使得该曲线在某种准则下与所有的数据点最为接近,即只要保证误差足够小即可,(最小化损失函数),这就是拟合是思想。

确定拟合曲线

给定一组数据[x,y],找出y和x之间的拟合曲线

image-20230811201338259

在matlab上通过画图得出这组数据对应的图像

plot(x,y,'o');

image-20230811205402341

拟合一个曲线去接近样本点,这里我用一个简单的拟合曲线y=kx+b。现在的问题是,k和b取何值时,样本点和拟合曲线最接近。

最小二乘法的几何解释

image-20230811210132216

  • 第一种定义有绝对值,后续不容易求导,因此计算较复杂。所以我们往往使用第二种定义,这正是最小二乘法的思想
  • 我们也不使用三次方,因为三次方计算样本点到拟合曲线的距离会出现负数,那么该距离就会正负抵消
  • 我们也不使用四次方,使用4次方时,若出现某个异常值离曲线较远,那么该拟合曲线受到的影响较大

image-20230811210708976

求解最小二乘法

image-20230811210825318

最终落脚到的两个公式:k</sup>和b<sup>推导公式

  • 该公式通过对k和b一介求导,然后分离系数所得

matlab求解最小二乘法

image-20230811211416247

根据公式不难得出代码

plot(x,y,'o');
xlabel("x");
ylabel("y");
n=size(x,1);%% 数据的个数
k=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x));
b=(sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x));
hold on;%% 写上这句后续可以继续在之前的图形上画图形
grid on;%% 图形显示网格线
f=@(x) k*x+b; %% f=kx+b是匿名函数,该函数图形不需要另外传参数也能形成图形
fplot(f,[2.5,7]);
legend('样本数据','拟合函数','location','southeast');
  1. f函数是匿名函数,该函数图形不需要另外传参数也能形成图形。在matlab中画出图形需要传参。比如正常情况下f函数需要传参x否则不能画出图形,而匿名函数系统会根据需求自己给出一定范围的参数以得画出图形

匿名函数的基本用法

handle = @(arglist) anonymous_function
  • 其中handle为调用匿名函数时使用的名字。

  • arglist为匿名函数的输入参数,可以是一个,也可以是多个,用逗号分隔。

  • anonymous_function为匿名函数的表达式。

  • 注意输入参数和表达式之间要用空格

  1. fplot可用于画出匿名一元函数的图形

基本用法

fplot(f,xinterval) 
  • 将匿名函数f在指定区间xinterval绘图。xinterval = [xmin xmax] 表示定义域的范围

image-20230811214612764

如何评价拟合的好坏

image-20230811214710021

  • 根据SST、SSE、SSR可以证明:
  1. SST=SSE+SSR
  2. 拟合优度:0<=1-SSE/SST<=1;而SSE误差平方和越小,拟合优度R2越接近1。误差越小说明拟合的越好
  3. 注意:拟合优度R2只能用于拟合函数是线性函数,若拟合函数是其他函数,直接看误差平方和即可,SSE越小,说明拟合度越好
  4. 线性函数是指在函数中,参数仅以一次方出现,且不能乘以或除以其他任何的参数,并不能出现参数的复合函数形式。该参数不是指自变量x。比如y=kx+b,该参数指的是区别于自变量x和因变量y以外的参数k和b。

image-20230811221145242

计算拟合优度的代码

plot(x,y,'o');
xlabel("x");
ylabel("y");
n=size(x,1);%% 数据的个数
k=(n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x));
b=(sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x));
hold on;%% 写上这句后续可以继续在之前的图形上画图形
grid on;%% 图形显示网格线
f=@(x) k*x+b; %% f=kx+b是匿名函数,该函数图形不需要另外传参数也能形成图形
fplot(f,[2.5,7]);
legend('样本数据','拟合函数','location','southeast');
y_hat=k*x+b;
SSR=sum((y_hat-mean(y)).^2); % 回归平方和
SSE=sum((y-y_hat).^2); % 误差平方和
SST=sum((y-mean(y)).^2); % 总体平方和
disp(SST-SSE-SSR);
R_2=SSR/SST; % 拟合优度
disp(R_2);

image-20230811222406484

  • SST-SSE-SSR的结果不为0的原因是在matlab中浮点数做运算一定程度上结果不精准,但结果是5.6843^-14结果是非常小的即非常接近0
    [外链图片转存中…(img-WkmLP3WM-1692188156893)]

  • SST-SSE-SSR的结果不为0的原因是在matlab中浮点数做运算一定程度上结果不精准,但结果是5.6843^-14结果是非常小的即非常接近0

  • 拟合度为0.9635非常接近1了,说明该拟合函数的拟合度较好

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/92500.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于OFDM+64QAM系统的载波同步matlab仿真,输出误码率,星座图,鉴相器,锁相环频率响应以及NCO等

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 2.1 OFDM原理 2.2 64QAM调制 2.3 载波同步 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 MATLAB2022a 3.部分核心程序 ............................................…

AI Chat 设计模式:15. 桥接模式

本文是该系列的第十五篇&#xff0c;采用问答式的方式展开&#xff0c;问题由我提出&#xff0c;答案由 Chat AI 作出&#xff0c;灰色背景的文字则主要是我的一些思考和补充。 问题列表 Q.1 如果你是第一次接触桥接模式&#xff0c;那么你会有哪些疑问呢&#xff1f;A.1Q.2 什…

TCP服务器—实现数据通信

目录 前言 1.接口介绍 2.编写服务器 3.编写客户端 4.编译链接 5.测试 6.总结 前言 今天我们要介绍的是使用TCP协议实现数据通信&#xff0c;相比于之前写的UDP服务器实现数据信&#xff0c;在主体逻辑上并没有差别。客户端向服务器发送信息&#xff0c;服务器接受信息并回…

【项目设计】从零实现一个高并发内存池

​&#x1f320; 作者&#xff1a;阿亮joy. &#x1f386;专栏&#xff1a;《项目设计》 &#x1f387; 座右铭&#xff1a;每个优秀的人都有一段沉默的时光&#xff0c;那段时光是付出了很多努力却得不到结果的日子&#xff0c;我们把它叫做扎根 目录 &#x1f449;项目介绍&…

【C++学习手札】一文带你初识运算符重载

食用指南&#xff1a;本文在有C基础的情况下食用更佳 &#x1f340;本文前置知识&#xff1a; C类 ♈️今日夜电波&#xff1a;クリームソーダとシャンデリア—Edo_Ame江户糖 1:20 ━━━━━━️&#x1f49f;──────── 3:40 …

Python中的字符串与字符编码

Hello&#xff0c;这里是Token_w的博客&#xff0c;欢迎您的到来 今天文章讲解的是Python中的字符串与字符编码&#xff0c;其中有基础的理论知识讲解&#xff0c;也有实战中的应用讲解&#xff0c;希望对你有所帮助 整理不易&#xff0c;如对你有所帮助&#xff0c;希望能得到…

分类预测 | MATLAB实现EVO-CNN多输入分类预测

分类预测 | MATLAB实现EVO-CNN多输入分类预测 目录 分类预测 | MATLAB实现EVO-CNN多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.MATLAB实现EVO-CNN多输入分类预测 2.代码说明&#xff1a;量谷优化卷积神经网络的数据分类预测&#xff1a;要求于Matlab …

Element Plus报错:ResizeObserver loop completed with undelivered notifications.

el-selected踩坑&#xff1a;el-selected 显示下拉框 mouseover 时报错&#xff01;&#xff01;&#xff01; 原来是属性 popper-append-to-body 被废除&#xff0c;改为 teleported。 element ui <el-select:popper-append-to-body"false"value-key"id&q…

【数据库】Sql Server可视化工具SSMS条件和SQL窗格以及版本信息

2023年&#xff0c;第34周&#xff0c;第1篇文章。给自己一个目标&#xff0c;然后坚持总会有收货&#xff0c;不信你试试&#xff01; SQL SERVER 官方本身就有数据库可视化管理工具SSMS&#xff0c;所以大部分都会使用SSMS。以前版本是直接捆绑&#xff0c; 安装完成就自带有…

从零开始学习 Java:简单易懂的入门指南之MAth、System(十二)

常见API&#xff0c;MAth、System 1 Math类1.1 概述1.2 常见方法1.3 算法小题(质数)1.4 算法小题(自幂数) 2 System类2.1 概述2.2 常见方法 1 Math类 1.1 概述 tips&#xff1a;了解内容 查看API文档&#xff0c;我们可以看到API文档中关于Math类的定义如下&#xff1a; Math类…

VR时代真的到来了?

业界对苹果的期待是&#xff0c;打造一台真正颠覆性的&#xff0c;给头显设备奠定发展逻辑底座的产品&#xff0c;而实际上&#xff0c;苹果只是发布了一台更强大的头显。 大众希望苹果回答的问题是“我为什么需要一台AR或者VR产品&#xff1f;”&#xff0c;但苹果回答的是“…

R语言 列表中嵌套列名一致的多个数据框如何整合为一个数据框

在批量建模后容易得到list&#xff0c;list中的每个元素都是单个的tibble 或者 dataframe&#xff0c;如何将这些数据整合为一张表呢&#xff1f; 载入R包 library(broom) library(tidyverse) 模拟数据 models <- txhousing %>% group_by(city) %>% do(modlm(lo…

leetcode 917.仅仅反转字母

⭐️ 题目描述 &#x1f31f; leetcode链接&#xff1a;仅仅反转字母 ps&#xff1a; 这道题思路很简单&#xff0c;只需要一个下标在前一个下标在后&#xff0c;分别找是字母的字符&#xff0c;找到之后交换即可。 代码&#xff1a; class Solution { public:bool isAlpha …

四、Controller 配置总结、RestFul 风格

文章目录 一、Controller 配置总结二、RestFul 风格2.1 使用 RequestMapping 的 method 属性指定请求类型 三、扩展&#xff1a;小黄鸭调试法 一、Controller 配置总结 实现 Controller 控制器的方式 实现 Controller 接口&#xff0c;重写 handleRequest 方法实现 控制器实现 …

小程序开发中事件绑定的执行方法

事件是渲染层到逻辑层的通讯方式。通过事件可以将用户在渲染层产生的行为&#xff0c;反馈到逻辑层进行业务的处理。小程序中常用属性和绑定方式如下&#xff1a; 当事件回调触发的时候&#xff0c;会收到一个事件对象 event&#xff0c;它的详细属性如下表所示&#xff1a; …

Unity游戏源码分享-中国象棋Unity5.6版本

Unity游戏源码分享-中国象棋Unity5.6版本 项目地址&#xff1a; https://download.csdn.net/download/Highning0007/88215699

HTML5的介绍和基本框架

目录 HTML5 HTML5介绍 HTML5的DOCTYPE声明 HTML5基本骨架 html标签 head标签 body标签 title标签 meta标签 在vscode中写出第一个小框架 HTML5 HTML5介绍 HTML5是用来描述网页的一种语言&#xff0c;被称为超文本标记语言。用HTML5编写的文件&#xff0c;后缀以.ht…

jenkins自动化构建保姆级教程(持续更新中)

1.安装 1.1版本说明 访问jenkins官网 https://www.jenkins.io/&#xff0c;进入到首页 点击【Download】按钮进入到jenkins下载界面 左侧显示的是最新的长期支持版本&#xff0c;右侧显示的是最新的可测试版本&#xff08;可能不稳定&#xff09;&#xff0c;建议使用最新的…

你真的了解数据结构与算法吗?

数据结构与算法&#xff0c;是理论和实践必须紧密结合的一门学科&#xff0c;有关数据结构和算法同类的课程或书籍&#xff0c;有些只是名为“数据结构”&#xff0c;而非“数据结构与算法”&#xff0c;它们在内容上并无很大区别。 实际上&#xff0c;数据结构和算法&#xf…

【Python】使用python解析普通格式的报文为someip格式报文

文章目录 1.安装scapy库2.示例 1.安装scapy库 使用 pip 安装 scapy 第三方库&#xff0c;打开 cmd&#xff0c;输入以下命令&#xff1a; pip install scapy出现如图所示&#xff0c;表示安装成功&#xff1a; 2.示例 要解析someip格式报文&#xff0c;需要导入someip模块&a…