【图像分类】理论篇(2)经典卷积神经网络 Lenet~Resenet

目录

1、卷积运算

2、经典卷积神经网络

2.1 Lenet

网络构架

代码实现

2.2 Alexnet

网络构架

代码实现

2.3 VGG

VGG16网络构架

代码实现

2.4 ResNet

ResNet50网络构架

代码实现

1、卷积运算

 在二维卷积运算中,卷积窗口从输入张量的左上角开始,从左到右、从上到下滑动。 当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,得到的张量再求和得到一个单一的标量值,由此我们得出了这一位置的输出张量值。 在如上例子中,输出张量的四个元素由二维互相关运算得到,这个输出高度为2、宽度为2,如下所示:

import torch
from torch import nndef Conv2d(X, K):  """计算二维卷积运算"""h, w = K.shapeY = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):Y[i, j] = (X[i:i + h, j:j + w] * K).sum()return Y

2、经典卷积神经网络

2.1 Lenet

网络构架:

代码实现:

import torch
import torch.nn as nnclass LeNet(nn.Module):def __init__(self, num_classes=10):super(LeNet, self).__init__()self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)self.pool1 = nn.MaxPool2d(kernel_size=2)self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)self.pool2 = nn.MaxPool2d(kernel_size=2)self.fc1 = nn.Linear(in_features=16*5*5, out_features=120)self.fc2 = nn.Linear(in_features=120, out_features=84)self.fc3 = nn.Linear(in_features=84, out_features=num_classes)def forward(self, x):x = self.pool1(torch.relu(self.conv1(x)))x = self.pool2(torch.relu(self.conv2(x)))x = x.view(-1, 16*5*5)x = torch.relu(self.fc1(x))x = torch.relu(self.fc2(x))x = self.fc3(x)return x# 创建LeNet模型
model = LeNet(num_classes=10)
print(model)

LeNet实现适用于MNIST数据集,其中输入图像大小为28x28,输出类别数为10(0-9的手写数字)。

2.2 Alexnet

网络构架:

 

代码实现:

import torch
import torch.nn as nnclass AlexNet(nn.Module):def __init__(self, num_classes=1000):super(AlexNet, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(64, 192, kernel_size=5, padding=2),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(192, 384, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(384, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=3, stride=2),)self.avgpool = nn.AdaptiveAvgPool2d((6, 6))self.classifier = nn.Sequential(nn.Dropout(),nn.Linear(256 * 6 * 6, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x# 创建AlexNet模型
model = AlexNet(num_classes=1000)
print(model)

代码中的AlexNet实现适用于ImageNet数据集,其中输入图像大小为224x224,输出类别数为1000。

2.3 VGG

VGG16网络构架:

代码实现:

import torch
import torch.nn as nnclass VGG16(nn.Module):def __init__(self, num_classes=1000):super(VGG16, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(64, 64, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(64, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(128, 128, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(128, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(256, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(512, 512, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2, stride=2),)self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = x.view(x.size(0), -1)x = self.classifier(x)return x# 创建VGG16模型
model = VGG16(num_classes=1000)
print(model)

代码中的VGG16实现适用于ImageNet数据集,其中输入图像大小为224x224,输出类别数为1000。

2.4 ResNet

ResNet50网络构架:

代码实现:

import torch
import torch.nn as nn# 定义残差块
class ResidualBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1):super(ResidualBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)if stride != 1 or in_channels != out_channels:self.downsample = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels))else:self.downsample = Nonedef forward(self, x):identity = xx = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.conv2(x)x = self.bn2(x)if self.downsample is not None:identity = self.downsample(identity)x += identityx = self.relu(x)return x# 定义ResNet-50
class ResNet50(nn.Module):def __init__(self, num_classes=1000):super(ResNet50, self).__init__()self.in_channels = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(64, 3, stride=1)self.layer2 = self._make_layer(128, 4, stride=2)self.layer3 = self._make_layer(256, 6, stride=2)self.layer4 = self._make_layer(512, 3, stride=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512 * 4, num_classes)def _make_layer(self, out_channels, num_blocks, stride):layers = []layers.append(ResidualBlock(self.in_channels, out_channels, stride))self.in_channels = out_channelsfor _ in range(1, num_blocks):layers.append(ResidualBlock(out_channels, out_channels))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = x.view(x.size(0), -1)x = self.fc(x)return x# 创建ResNet-50模型
model = ResNet50(num_classes=1000)
print(model)

代码中的ResNet50实现适用于ImageNet数据集,其中输入图像大小为224x224,输出类别数为1000。

【图像分类】 理论篇(1) 图像分类的测评指标_TechMasterPlus的博客-CSDN博客

【图像分类】理论篇(3)交叉熵损失函数的理解与代码实现_TechMasterPlus的博客-CSDN博客

【图像分类】理论篇(4)图像增强opencv实现_TechMasterPlus的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/96675.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SLAM】ORBSLAM34macOS: ORBSLAM3 Project 4(for) macOS Platform

文章目录 配置ORBSLAM34macOS 版本运行步骤:版本修复问题记录:编译 fix运行 fix 配置 硬件:MacBook Pro Intel CPU 系统:macOS Ventura 13.4.1 ORBSLAM34macOS 版本 https://github.com/phdsky/ORB_SLAM3/tree/macOS 运行步骤&…

File Upload

File Upload 文件上传功能是大部分WEB应用的常用功能,网站允许用户自行上传头像、照片、一些服务类网站需要用户上传证明材料的电子档、电商类网站允许用户上传图片展示商品情况等。然而,看似不起眼的文件上传功能如果没有做好安全防护措施,…

数学建模之“聚类分析”原理详解

一、聚类分析的概念 1、聚类分析(又称群分析)是研究样品(或指标)分类问题的一种多元统计法。 2、主要方法:系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。这里主要介绍系统聚类法…

【学会动态规划】单词拆分(24)

目录 动态规划怎么学? 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后: 动态规划怎么学? 学习一个算法没有捷径,更何况是学习动态规划, 跟我…

【微服务技术一】Eureka、Nacos、Ribbon(配置管理、注册中心、负载均衡)

微服务技术一 技术栈图一、注册中心Eureka概念:搭建EurekaServer服务注册服务发现(消费者对提供者的远程调用) 二、Ribbon负载均衡负载均衡的原理:LoadBalanced负载均衡的策略:IRule懒加载 三、Nacos注册中心Nacos的安…

CG MAGIC分享为什么使用3d Max渲染,呈现白蒙蒙的?

使用3d Max渲染,有小伙伴反映,为什么渲染过程中,max渲染,总是出现白蒙蒙的的效果呢? 渲染出这白白一片是什么原因导致的呢? 想要解决的朋友,点进来,看看CG MAGIC小编整理的解决方法…

208、仿真-51单片机脉搏心率与心电报警Proteus仿真设计(程序+Proteus仿真+配套资料等)

毕设帮助、开题指导、技术解答(有偿)见文未 目录 一、硬件设计 二、设计功能 三、Proteus仿真图 四、程序源码 资料包括: 需要完整的资料可以点击下面的名片加下我,找我要资源压缩包的百度网盘下载地址及提取码。 方案选择 单片机的选择 方案一&a…

学习笔记:Opencv实现图像特征提取算法SIFT

2023.8.19 为了在暑假内实现深度学习的进阶学习,特意学习一下传统算法,分享学习心得,记录学习日常 SIFT的百科: SIFT Scale Invariant Feature Transform, 尺度不变特征转换 全网最详细SIFT算法原理实现_ssift算法_Tc.小浩的博客…

python+django+mysql项目实践四(信息修改+用户登陆)

python项目实践 环境说明: Pycharm 开发环境 Django 前端 MySQL 数据库 Navicat 数据库管理 用户信息修改 修改用户信息需要显示原内容,进行修改 通过url传递编号 urls views 修改内容需要用数据库的更新,用update进行更新,用filter进行选择 输入参数多nid,传递要修…

深度学习优化器

1、什么是优化器 优化器用来寻找模型的最优解。 2、常见优化器 2.1. 批量梯度下降法BGD(Batch Gradient Descent) 2.1.1、BGD表示 BGD 采用整个训练集的数据来计算 cost function 对参数的梯度: 假设要学习训练的模型参数为W,代价函数为J(W),…

数组详解

1. 一维数组的创建和初始化 1.1 数组的创建 数组是一组相同类型元素的集合。 数组的创建方式: type_t arr_name [const_n]; //type_t 是指数组的元素类型 //const_n 是一个常量表达式,用来指定数组的大小 数组创建的实例: //代码1 int a…

OCT介绍和分类

前言:研究方向和OCT有关,为了方便以后回顾,所以整理了OCT相关的一些内容。 OCT介绍和分类 OCT介绍分类时域OCT频域OCT扫频OCT谱域OCT OCT介绍 名称:OCT、光学相干层析成像术、Optical Coherence Tomography。 概念:O…

CSS中的calc()函数有什么作用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ CSS中的calc()函数及其作用⭐ 作用⭐ 示例1. 动态计算宽度:2. 响应式布局:3. 自适应字体大小:4. 计算间距: ⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点…

深度学习的“前世今生”

1、“感知机”的诞生 20世纪50年代,人工智能派生出了这样两个学派,分别是“符号学派”及“连接学派”。前者的领军学者有Marvin Minsky及John McCarthy,后者则是由Frank Rosenblatt所领导。 “符号学派”的人相信对机器从头编程&#xff0c…

KeilMDk软仿真设置_STM32F03C8

1、KeilMDK软仿真的价值 (1)在没有硬件的情况下进行程序的编写调试。 (2)避免频繁的下载程序,延长单片机Flash寿命。 2、软仿真配置。 (1)打开Keil工程。 (2)点击“Options for Target ***”,如下图所示。 (3)点击“Debug”。 (4)进行如下配置。 U…

云计算|OpenStack|使用VMware安装华为云的R006版CNA和VRM---初步使用(二)

前言: 在前面一篇文章云计算|OpenStack|使用VMware安装华为云的R006版CNA和VRM---初始安装(一)_华为cna_晚风_END的博客-CSDN博客 介绍了基于VMware虚拟机里嵌套部署华为云的云计算,不过仅仅是做到了在VRM的web界面添加计算节点…

Java入门必备|有你想知道的代码技巧

前言 本文主要分享记录学习Java时的敲代码大法,一步步与idea这个软件磨合,让它为我们敲代码这条路提供更便捷的帮助(雀食好用哈) 一.psvm 很多刚上手IJ软件,就被main()方法给折服了,这段代码量十分大 当…

C++音乐播放系统

C音乐播放系统 音乐的好处c发出声音乐谱与赫兹对照把歌打到c上 学习c的同学们都知道,c是一个一本正经的编程语言,因该没有人用它来做游戏、做病毒、做…做…做音乐播放系统吧!! 音乐的好处 提升情绪:音乐能够影响我们…

【小梦C嘎嘎——启航篇】vector 以及日常使用的接口介绍

【小梦C嘎嘎——启航篇】vector 日常使用的接口介绍😎 前言🙌vector 是什么?vector 比较常使用的接口 总结撒花💞 😎博客昵称:博客小梦 😊最喜欢的座右铭:全神贯注的上吧&#xff01…

SQL力扣练习(十一)

目录 1.树节点(608) 示例 1 解法一(case when) 解法二(not in) 2.判断三角形(610) 示例 1 解法一(case when) 解法二(if) 解法三(嵌套if) 3.只出现一次的最大数字(619) 示例 1 解法一(count limit) 解法二(max) 4.有趣的电影(620) 解法一 5.换座位(626) 示例 …