Hadoop小结(上)

最近在学大模型的分布式训练和存储,自己的分布式相关基础比较薄弱,基于深度学习的一切架构皆来源于传统,我总结了之前大数据的分布式解决方案即Hadoop:

Why Hadoop

Hadoop 的作用非常简单,就是在多计算机集群环境中营造一个统一而稳定的存储和计算环境,并能为其他分布式应用服务提供平台支持。

Hadoop 在某种程度上将多台计算机组织成了一台计算机(做同一件事),那么 HDFS 就相当于这台计算机的硬盘,而 MapReduce 就是这台计算机的 CPU 控制器。

Trouble

由于 Hadoop 是为集群设计的软件,所以我们在学习它的使用时难免会遇到在多台计算机上配置 Hadoop 的情况,这对于学习者来说会制造诸多障碍,主要有两个:

  1. 昂贵的计算机集群。多计算机构成的集群环境需要昂贵的硬件.
  2. 难以部署和维护。在众多计算机上部署相同的软件环境是一个大量的工作,而且非常不灵活,难以在环境更改后重新部署。

为了解决这些问题,我们有一个非常成熟的方式Docker

Docker 是一个容器管理系统,它可以向虚拟机一样运行多个"虚拟机"(容器),并构成一个集群。因为虚拟机会完整的虚拟出一个计算机来,所以会消耗大量的硬件资源且效率低下,而 Docker 仅提供一个独立的、可复制的运行环境,实际上容器中所有进程依然在主机上的内核中被执行,因此它的效率几乎和主机上的进程一样(接近100%)。

Hadoop 整体设计

Hadoop 框架是用于计算机集群大数据处理的框架,所以它必须是一个可以部署在多台计算机上的软件。部署了 Hadoop 软件的主机之间通过套接字 (网络) 进行通讯。

Hadoop 主要包含 HDFS 和 MapReduce 两大组件,HDFS 负责分布储存数据,MapReduce 负责对数据进行映射、规约处理,并汇总处理结果。

Hadoop 框架最根本的原理就是利用大量的计算机同时运算来加快大量数据的处理速度。例如,一个搜索引擎公司要从上万亿条没有进行规约的数据中筛选和归纳热门词汇就需要组织大量的计算机组成集群来处理这些信息。如果使用传统数据库来处理这些信息的话,那将会花费很长的时间和很大的处理空间来处理数据,这个量级对于任何单计算机来说都变得难以实现,主要难度在于组织大量的硬件并高速地集成为一个计算机,即使成功实现也会产生昂贵的维护成本。

Hadoop 可以在多达几千台廉价的量产计算机上运行,并把它们组织为一个计算机集群。

一个 Hadoop 集群可以高效地储存数据、分配处理任务,这样会有很多好处。首先可以降低计算机的建造和维护成本,其次,一旦任何一个计算机出现了硬件故障,不会对整个计算机系统造成致命的影响,因为面向应用层开发集群框架本身就必须假定计算机会出故障。

HDFS

Hadoop Distributed File System,Hadoop 分布式文件系统,简称 HDFS。

HDFS 用于在集群中储存文件,它所使用的核心思想是 Google 的 GFS 思想,可以存储很大的文件。

在服务器集群中,文件存储往往被要求高效而稳定,HDFS同时实现了这两个优点。

HDFS 高效的存储是通过计算机集群独立处理请求实现的。因为用户 (一半是后端程序) 在发出数据存储请求时,往往响应服务器正在处理其他请求,这是导致服务效率缓慢的主要原因。但如果响应服务器直接分配一个数据服务器给用户,然后用户直接与数据服务器交互,效率会快很多。

数据存储的稳定性往往通过"多存几份"的方式实现,HDFS 也使用了这种方式。HDFS 的存储单位是块 (Block) ,一个文件可能会被分为多个块储存在物理存储器中。因此 HDFS 往往会按照设定者的要求把数据块复制 n 份并存储在不同的数据节点 (储存数据的服务器) 上,如果一个数据节点发生故障数据也不会丢失。

HDFS 的节点

HDFS 运行在许多不同的计算机上,有的计算机专门用于存储数据,有的计算机专门用于指挥其它计算机储存数据。这里所提到的"计算机"我们可以称之为集群中的节点。

命名节点 (NameNode)

命名节点 (NameNode) 是用于指挥其它节点存储的节点。任何一个"文件系统"(File System, FS) 都需要具备根据文件路径映射到文件的功能,命名节点就是用于储存这些映射信息并提供映射服务的计算机,在整个 HDFS 系统中扮演"管理员"的角色,因此一个 HDFS 集群中只有一个命名节点。

数据节点 (DataNode)

数据节点 (DataNode) 使用来储存数据块的节点。当一个文件被命名节点承认并分块之后将会被储存到被分配的数据节点中去。数据节点具有储存数据、读写数据的功能,其中存储的数据块比较类似于硬盘中的"扇区"概念,是 HDFS 存储的基本单位

副命名节点 (Secondary NameNode)

副命名节点 (Secondary NameNode) 别名"次命名节点",是命名节点的"秘书"。这个形容很贴切,因为它并不能代替命名节点的工作,无论命名节点是否有能力继续工作。它主要负责分摊命名节点的压力、备份命名节点的状态并执行一些管理工作,如果命名节点要求它这样做的话。如果命名节点坏掉了,它也可以提供备份数据以恢复命名节点。副命名节点可以有多个。

请添加图片描述

MapReduce

MapReduce 的含义就像它的名字一样浅显:Map 和 Reduce (映射和规约) 。

大数据处理

大量数据的处理是一个典型的"道理简单,实施复杂"的事情。之所以"实施复杂",主要是大量的数据使用传统方法处理时会导致硬件资源 (主要是内存) 不足。

现在有一段文字 (真实环境下这个字符串可能长达 1 PB 甚至更多) ,我们执行一个简单的"数字符"统计,即统计出这段文字中所有出现过的字符出现的数量:

AABABCABCDABCDE

统计之后的结果应该是:
A 5
B 4
C 3
D 2
E 1
统计的过程实际上很简单,就是每读取一个字符就要检查表中是否已经有相同的字符,如果没有就添加一条记录并将记录值设置为 1 ,如果有的话就直接将记录值增加 1。

但是如果我们将这里的统计对象由"字符"变成"词",那么样本容量就瞬间变得非常大,以至于一台计算机可能难以统计数十亿用户一年来用过的"词"。

在这种情况下我们依然有办法完成这项工作——我们先把样本分成一段段能够令单台计算机处理的规模,然后一段段地进行统计,每执行完一次统计就对映射统计结果进行规约处理,即将统计结果合并到一个更庞大的数据结果中去,最终就可以完成大规模的数据规约。

在以上的案例中,第一阶段的整理工作就是"映射",把数据进行分类和整理,到这里为止,我们可以得到一个相比于源数据小很多的结果。第二阶段的工作往往由集群来完成,整理完数据之后,我们需要将这些数据进行总体的归纳,毕竟有可能多个节点的映射结果出现重叠分类。这个过程中映射的结果将会进一步缩略成可获取的统计结果。

MapReduce 概念

示例:

假设有 5 个文件,每个文件包含两列,分别记录一个城市的名称以及该城市在不同测量日期记录的相应温度。城市名称是键 (Key) ,温度是值 (Value) 。例如:(厦门,20)。现在我们要在所有数据中找到每个城市的最高温度 (请注意,每个文件中可能出现相同的城市)。

使用 MapReduce 框架,我们可以将其分解为 5 个映射任务,其中每个任务负责处理五个文件中的一个。每个映射任务会检查文件中的每条数据并返回该文件中每个城市的最高温度。

例如,对于以下数据:

城市温度
厦门12
上海34
厦门20
上海15
北京14
北京16
厦门24

打个比方,你可以把 MapReduce 想象成人口普查,人口普查局会把若干个调查员派到每个城市。每个城市的每个人口普查人员都将统计该市的部分人口数量,然后将结果汇总返回首都。在首都,每个城市的统计结果将被规约到单个计数(各个城市的人口),然后就可以确定国家的总人口。这种人到城市的映射是并行的,然后合并结果(Reduce)。这比派一个人以连续的方式清点全国中的每一个人效率高得多。

Hadoop 三种模式:单机模式、伪集群模式和集群模式
  • 单机模式:Hadoop 仅作为库存在,可以在单计算机上执行 MapReduce 任务,仅用于开发者搭建学习和试验环境。
  • 伪集群模式:此模式 Hadoop 将以守护进程的形式在单机运行,一般用于开发者搭建学习和试验环境。
  • 集群模式:此模式是 Hadoop 的生产环境模式,也就是说这才是 Hadoop 真正使用的模式,用于提供生产级服务。

HDFS 配置和启动

HDFS 和数据库相似,是以守护进程的方式启动的。使用 HDFS 需要用 HDFS 客户端通过网络 (套接字) 连接到 HDFS 服务器实现文件系统的使用。

配置好 Hadoop 的基础环境,容器名为 hadoop_single,启动并进入该容器。

进入该容器后,确认一下 Hadoop 是否存在:

hadoop version

如果结果显示出 Hadoop 版本号则表示 Hadoop 存在。

接下来我们将进入正式步骤。

新建 hadoop 用户

新建用户,名为 hadoop:

adduser hadoop

安装一个小工具用于修改用户密码和权限管理:

yum install -y passwd sudo

设置 hadoop 用户密码:

passwd hadoop

接下来两次输入密码,一定要记住!

修改 hadoop 安装目录所有人为 hadoop 用户:

chown -R hadoop /usr/local/hadoop

然后用文本编辑器修改 /etc/sudoers 文件,在

root    ALL=(ALL)       ALL

之后添加一行

hadoop  ALL=(ALL)       ALL

然后退出容器。

关闭并提交容器 hadoop_single 到镜像 hadoop_proto:

docker stop hadoop_single
docker commit hadoop_single hadoop_proto

创建新容器 hdfs_single :

docker run -d --name=hdfs_single --privileged hadoop_proto /usr/sbin/init

这样新用户就被创建了。

启动 HDFS

现在进入刚建立的容器:

docker exec -it hdfs_single su hadoop

现在应该是 hadoop 用户:

whoami

应该显示 “hadoop”

生成 SSH 密钥:

ssh-keygen -t rsa

这里可以一直按回车直到生成结束。

然后将生成的密钥添加到信任列表:

ssh-copy-id hadoop@172.17.0.2

查看容器 IP 地址:

ip addr | grep 172

从而得知容器的 IP 地址是 172.17.0.2,你们的 IP 可能会与此不同。

在启动 HDFS 以前我们对其进行一些简单配置,Hadoop 配置文件全部储存在安装目录下的 etc/hadoop 子目录下,所以我们可以进入此目录:

cd $HADOOP_HOME/etc/hadoop

这里我们修改两个文件:core-site.xml 和 hdfs-site.xml

在 core-site.xml 中,我们在 标签下添加属性:

<property><name>fs.defaultFS</name><value>hdfs://<你的IP>:9000</value>
</property>

在 hdfs-site.xml 中的 标签下添加属性:

<property><name>dfs.replication</name><value>1</value>
</property>

格式化文件结构:

hdfs namenode -format

然后启动 HDFS:

start-dfs.sh

启动分三个步骤,分别启动 NameNode、DataNode 和 Secondary NameNode。

运行 jps 查看 Java 进程

到此为止,HDFS 守护进程已经建立,由于 HDFS 本身具备 HTTP 面板,我们可以通过浏览器访问http://你的容器IP:9870/来查看 HDFS 面板以及详细信息。

HDFS 使用

HDFS Shell

回到 hdfs_single 容器,以下命令将用于操作 HDFS:

# 显示根目录 / 下的文件和子目录,绝对路径
hadoop fs -ls /
# 新建文件夹,绝对路径
hadoop fs -mkdir /hello
# 上传文件
hadoop fs -put hello.txt /hello/
# 下载文件
hadoop fs -get /hello/hello.txt
# 输出文件内容
hadoop fs -cat /hello/hello.txt

HDFS 最基础的命令如上所述,除此之外还有许多其他传统文件系统所支持的操作。

HDFS API

HDFS 已经被很多的后端平台所支持,目前官方在发行版中包含了 C/C++ 和 Java 的编程接口。此外,node.js 和 Python 语言的包管理器也支持导入 HDFS 的客户端。

以下是包管理器的依赖项列表:

Maven:

<dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.4</version>
</dependency>

Gradle:

providedCompile group: 'org.apache.hadoop', name: 'hadoop-hdfs-client', version: '3.1.4'

NPM:

npm i webhdfs 

pip:

pip install hdfs

Java 连接 HDFS 的例子(修改 IP 地址):

实例
package com.zain;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.*;
public class Application {public static void main(String[] args) {try {// 配置连接地址Configuration conf = new Configuration();conf.set("fs.defaultFS", "hdfs://172.17.0.2:9000");FileSystem fs = FileSystem.get(conf);// 打开文件并读取输出Path hello = new Path("/hello/hello.txt");FSDataInputStream ins = fs.open(hello);int ch = ins.read();while (ch != -1) {System.out.print((char)ch);ch = ins.read();}System.out.println();} catch (IOException ioe) {ioe.printStackTrace();}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/97108.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++11新特性】lambda表达式

文章目录 1. lambda表达式概念2. lambda表达式语法3. lambda表达式应用 1. lambda表达式概念 lambda表达式是一个匿名函数&#xff0c;恰当使用lambda表达式可以让代码变得简洁&#xff0c;并且可以提高代码的可读性。 见见lambda表达式的使用 现在要对若干商品分别按照价格和…

十六、Spring Cloud Sleuth 分布式请求链路追踪

目录 一、概述1、为什么出出现这个技术&#xff1f;需要解决哪些问题2、是什么&#xff1f;3、解决 二、搭建链路监控步骤1、下载运行zipkin2、服务提供者3、服务调用者4、测试 一、概述 1、为什么出出现这个技术&#xff1f;需要解决哪些问题 2、是什么&#xff1f; 官网&am…

Linux0.11内核源码解析-truncate.c

truncate文件只要实现释放指定i节点在设备上占用的所有逻辑块&#xff0c;包括直接块、一次间接块、二次间接块。从而将文件节点对应的文件长度截为0&#xff0c;并释放占用的设备空间。 索引节点的逻辑块连接方式 释放一次间接块 static void free_ind(int dev,int block) {…

Windows10上VS2022单步调试FFmpeg 4.2源码

之前在 https://blog.csdn.net/fengbingchun/article/details/103735560 介绍过通过VS2017单步调试FFmpeg源码的方法&#xff0c;这里在Windows10上通过VS2022单步调试FFmpeg 4.2的方法&#xff1a;基于GitHub上ShiftMediaProject/FFmpeg项目&#xff0c;下面对编译过程进行说明…

【mysql】—— 表的增删改查

目录 序言 &#xff08;一&#xff09;Create操作 1、单行数据 全列插入 2、多行数据 指定列插入 3、插入否则更新 4、直接替换 &#xff08;二&#xff09;Retrieve操作 1、SELECT 列 1️⃣全列查询 2️⃣指定列查询 3️⃣查询字段为表达式 4️⃣为查询结果指定…

snpEff变异注释的一点感想

snpEff变异注释整成人生思考 1.介绍2.安装过程以及构建物种参考数据库3.坑货来了4.结果文件判读5.小tips 1.介绍 &nbsp SnpEff&#xff08;Snp Effect&#xff09;是一个用于预测基因组变异&#xff08;例如单核苷酸变异、插入、缺失等&#xff09;对基因功能的影响的生物…

aardio简单网站css或js下载练习

import win.ui; /*DSG{{*/ var winform win.form(text"下载网站css或js";right664;bottom290;maxfalse) winform.add( buttonClose{cls"button";text"退出";left348;top204;right498;bottom262;color14120960;fontLOGFONT(h-14);note" &qu…

如何使用Redis实现附近商家查询

导读 在日常生活中&#xff0c;我们经常能看见查询附近商家的功能。 常见的场景有&#xff0c;比如你在点外卖的时候&#xff0c;就可能需要按照距离查询附近几百米或者几公里的商家。 本文将介绍如何使用Redis实现按照距离查询附近商户的功能&#xff0c;并以SpringBoot项目…

时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测 目录 时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测预测效果基本介绍模型描述程序设计学习总结参考资料 预测效果 基本介绍 时序预测 | MATLAB实现WOA-…

IDEA开发项目时一直出现http404错误的解决方法

系列文章目录 安装cv2库时出现错误的一般解决方法_cv2库安装失败 SQL&#xff1e; conn sys/root as sysdbaERROR:ORA-12560: TNS: 协议适配器错误的解决方案 虚拟机启动时出现“已启用侧通道缓解”的解决方法 Hypervisor launch failed&#xff1b; Processor does not pr…

git压缩/合并多次commit提交为1次commit提交

git压缩/合并N次commit提交为1次commit提交 假设有最近3次提交&#xff1a; commit_id1 commit_id2 commit_id3目标是把以上3次commit合并成1个commit&#xff0c;注意&#xff0c;最新的commit提交在最上面。 在git bash里面的操作步骤&#xff1a; &#xff08;1&#xff0…

Hyperledger Fabric的使用及开发

Hyperledger Fabric是Linux基金会发起的一种跨行业的区块链技术&#xff0c;目前在多家大型公司有着应用&#xff0c;这里就不多做HF本身的介绍了&#xff0c;有兴趣可关注其官网。 1. 准备工作&#xff1a; 开始前需要一定的准备工作&#xff0c;安装各类中间件&#xff1a;…

Python学习笔记_基础篇(五)_数据类型之字典

一.基本数据类型 整数&#xff1a;int 字符串&#xff1a;str(注&#xff1a;\t等于一个tab键) 布尔值&#xff1a; bool 列表&#xff1a;list 列表用[] 元祖&#xff1a;tuple 元祖用&#xff08;&#xff09; 字典&#xff1a;dict 注&#xff1a;所有的数据类型都存在想对…

【自创】关于前端js的“嵌套地狱”的遍历算法

欢迎大家关注我的CSDN账号 欢迎大家关注我的哔哩哔哩账号&#xff1a;卢淼儿的个人空间-卢淼儿个人主页-哔哩哔哩视频 此saas系统我会在9月2号之前&#xff0c;在csdn及哔哩哔哩上发布成套系列教学视频。敬请期待&#xff01;&#xff01;&#xff01; 首先看图 这是我们要解…

使用nrm快速切换npm源以及解决Method Not Implemented

文章目录 什么是nrm如何使用nrm查看本机目前使用的npm 源安装nrm查看可选源查看当前使用源切换源添加源删除源测试源的响应时间 如果你遇到这个报错&#xff0c;就可以采用这种方案解决哦解决方案&#xff1a;1. 切换为官方源2. 查看漏洞3. 修复漏洞4. 下面命令慎重使用&#x…

Jmeter 分布式性能测试避坑指南

在做后端服务器性能测试中&#xff0c;我们会经常听到分布式。那你&#xff0c;是否了解分布式呢&#xff1f;今天&#xff0c;我们就来给大家讲讲&#xff0c;在企业实战中&#xff0c;如何使用分布式进行性能测试&#xff0c;实战过程中&#xff0c;又有哪些地方要特别注意&a…

Docker 练习2 安装MySQL

一、实验要求 1、使用mysql:5.6和 owncloud 镜像&#xff0c;构建一个个人网盘。 2、安装搭建私有仓库 Harbor 3、编写Dockerfile制作Web应用系统nginx镜像&#xff0c;生成镜像nginx:v1.1&#xff0c;并推送其到私有仓库。具体要求如下&#xff1a; &#xff08;1&#xff09…

ES的索引结构与算法解析

提到ES&#xff0c;大多数爱好者想到的都是搜索引擎&#xff0c;但是明确一点&#xff0c;ES不等同于搜索引擎。不管是谷歌、百度、必应、搜狗为代表的自然语言处理(NLP)、爬虫、网页处理、大数据处理的全文搜索引擎&#xff0c;还是有明确搜索目的的搜索行为&#xff0c;如各大…

SpringBoot + Vue 微人事(十二)

职位批量删除实现 编写后端接口 PositionController DeleteMapping("/")public RespBean deletePositionByIds(Integer[] ids){if(positionsService.deletePositionsByIds(ids)ids.length){return RespBean.ok("删除成功");}return RespBean.err("删…

数据结构 - 算法的时间效率和空间效率

一、时间效率 程序在计算机上执行所消耗的时间。 两种估算方式&#xff1a; 事后统计事前分析 算法运行时间 一个简单操作所需的时间X简单操作次数 算法运行总时间 Σ每条语句执行次数&#xff08;即&#xff1a;每条语句频度&#xff09;X该语句执行一次所需的时间 每条语…