C++中线程同步与互斥的4种方式介绍、对比、场景举例

image.png

在C++中,当两个或更多的线程需要访问共享数据时,就会出现线程安全问题。这是因为,如果没有适当的同步机制,一个线程可能在另一个线程还没有完成对数据的修改就开始访问数据,这将导致数据的不一致性和程序的不可预测性。为了解决这个问题,C++提供了多种线程同步和互斥的机制。

1. 互斥量(Mutex)

互斥量是一种同步机制,用于防止多个线程同时访问共享资源。在C++中,可以使用std::mutex类来创建互斥量。

#include <thread>
#include <mutex>std::mutex mtx;  // 全局互斥量
int shared_data = 0;  // 共享数据void thread_func() {for (int i = 0; i < 10000; ++i) {mtx.lock();  // 获取互斥量的所有权++shared_data;  // 修改共享数据mtx.unlock();  // 释放互斥量的所有权}
}int main() {std::thread t1(thread_func);std::thread t2(thread_func);t1.join();t2.join();std::cout << shared_data << std::endl;  // 输出20000return 0;
}

在上述代码中,我们创建了一个全局互斥量mtx和一个共享数据shared_data。然后,我们在thread_func函数中使用mtx.lock()mtx.unlock()来保护对shared_data的访问,确保在任何时候只有一个线程可以修改shared_data

2. 锁(Lock)

除了直接使用互斥量,C++还提供了std::lock_guardstd::unique_lock两种锁,用于自动管理互斥量的所有权。

#include <thread>
#include <mutex>std::mutex mtx;  // 全局互斥量
int shared_data = 0;  // 共享数据void thread_func() {for (int i = 0; i < 10000; ++i) {std::lock_guard<std::mutex> lock(mtx);  // 创建锁,自动获取互斥量的所有权++shared_data;  // 修改共享数据// 锁在离开作用域时自动释放互斥量的所有权}
}int main() {std::thread t1(thread_func);std::thread t2(thread_func);t1.join();t2.join();std::cout << shared_data << std::endl;  // 输出20000return 0;
}

在上述代码中,我们使用std::lock_guard来自动管理互斥量的所有权。当创建std::lock_guard对象时,它会自动获取互斥量的所有权,当std::lock_guard对象离开作用域时,它会自动释放互斥量的所有权。这样,我们就不需要手动调用mtx.lock()mtx.unlock(),可以避免因忘记释放互斥量而导致的死锁。

3. 条件变量(Condition Variable)

条件变量是一种同步机制,用于在多个线程之间同步条件的变化。在C++中,可以使用std::condition_variable类来创建条件变量。

#include <thread>
#include <mutex>
#include <condition_variable>std::mutex mtx;  // 全局互斥量
std::condition_variable cv;  // 全局条件变量
bool ready = false;  // 共享条件void print_id(int id) {std::unique_lock<std::mutex> lock(mtx);  // 创建锁,自动获取互斥量的所有权while (!ready) {  // 如果条件不满足cv.wait(lock);  // 等待条件变量的通知}// 当收到条件变量的通知,且条件满足时,继续执行std::cout << "thread " << id << '\n';
}void go() {std::unique_lock<std::mutex> lock(mtx);  // 创建锁,自动获取互斥量的所有权ready = true;  // 修改共享条件cv.notify_all();  // 通知所有等待的线程
}int main() {std::thread threads[10];for (int i = 0; i < 10; ++i)threads[i] = std::thread(print_id, i);std::cout << "10 threads ready to race...\n";go();  // 开始比赛for (auto& th : threads) th.join();return 0;
}

在上述代码中,我们创建了一个全局互斥量mtx、一个全局条件变量cv和一个共享条件ready。然后,我们在print_id函数中使用cv.wait(lock)来等待条件变量的通知,当收到条件变量的通知,且条件满足时,继续执行。在go函数中,我们修改共享条件,并使用cv.notify_all()来通知所有等待的线程。

4. 原子操作(Atomic Operation)

原子操作是一种特殊的操作,它可以在多线程环境中安全地对数据进行读写,而无需使用互斥量或锁。在C++中,可以使用std::atomic模板类来创建原子类型。

#include <thread>
#include <atomic>std::atomic<int> shared_data(0);  // 共享数据void thread_func() {for (int i = 0; i < 10000; ++i) {++shared_data;  // 原子操作}
}int main() {std::thread t1(thread_func);std::thread t2(thread_func);t1.join();t2.join();std::cout << shared_data << std::endl;  // 输出20000return 0;
}

在上述代码中,我们创建了一个原子类型的共享数据shared_data。然后,我们在thread_func函数中使用++shared_data来进行原子操作,这样,我们就不需要使用互斥量或锁,也可以保证在任何时候只有一个线程可以修改shared_data

5. 对比

策略优点缺点
单一全局互斥量简单可能导致严重的性能问题,降低并发性
多个互斥量提高并发性增加程序复杂性,需要避免死锁
原子操作提高并发性,避免互斥量开销增加程序复杂性,需要理解和使用原子操作
读写锁提高并发性,特别是读操作多于写操作时增加程序复杂性,需要管理读写锁,需要避免死锁

案例举例

假设我们正在开发一个在线聊天服务器,需要处理大量的并发连接。每个连接都有一个关联的用户对象,用户对象包含了用户的状态信息,如用户名、在线状态等。

在这种情况下,我们可以使用多个互斥量的策略。我们可以将用户对象划分为几个组,每个组有一个关联的互斥量。当一个线程需要访问一个用户对象时,它只需要锁定该用户对象所在组的互斥量,而不是所有的用户对象。这样,不同的线程可以同时访问不同的用户对象,从而提高并发性。

同时,我们也可以使用读写锁的策略。因为在大多数情况下,线程只需要读取用户的状态信息,而不需要修改。所以,我们可以使用读写锁,允许多个线程同时读取用户对象,但在修改用户对象时需要独占锁。

在实践中,我们可能需要结合使用这两种策略,以达到最佳的效果。

6. 更进一步:原子操作+锁

原子操作和锁是两种不同的线程同步机制,它们可以单独使用,也可以一起使用,具体取决于你的应用场景。

原子操作是一种低级的同步机制,它可以保证对单个内存位置的读写操作是原子的,即在任何时候只有一个线程可以对内存位置进行操作。原子操作通常用于实现高级的同步机制,如锁和条件变量。

锁是一种高级的同步机制,它可以保证对一段代码或多个内存位置的访问是原子的,即在任何时候只有一个线程可以执行被锁保护的代码或访问被锁保护的内存位置。

如果你在使用锁的同时还使用原子操作,那么你需要确保你的代码正确地理解和使用这两种同步机制。例如,如果你在一个被锁保护的代码段中使用原子操作,那么你需要确保原子操作不会违反锁的语义,即在任何时候只有一个线程可以执行被锁保护的代码。

以下是一个使用原子操作和锁的例子:

#include <thread>
#include <mutex>
#include <atomic>std::mutex mtx;  // 全局互斥量
std::atomic<int> counter(0);  // 原子计数器void thread_func() {for (int i = 0; i < 10000; ++i) {std::lock_guard<std::mutex> lock(mtx);  // 获取互斥量的所有权++counter;  // 原子操作// 锁在离开作用域时自动释放互斥量的所有权}
}int main() {std::thread t1(thread_func);std::thread t2(thread_func);t1.join();t2.join();std::cout << counter << std::endl;  // 输出20000return 0;
}

在上述代码中,我们使用std::lock_guard来获取互斥量的所有权,然后使用++counter来进行原子操作。这样,我们既保证了在任何时候只有一个线程可以执行被锁保护的代码,也保证了对counter的操作是原子的。

总的来说,原子操作和锁可以一起使用,但你需要确保你的代码正确地理解和使用这两种同步机制。

总结

在C++中,当两个或更多的线程需要访问共享数据时,可以使用互斥量、锁、条件变量和原子操作等多种线程同步和互斥的机制来保证线程安全。选择哪种机制,取决于具体的应用场景和需求。

参考资料

  1. C++ Reference: thread
  2. C++ Reference: mutex
  3. C++ Reference: condition_variable
  4. C++ Reference: atomic

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/975.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1、docker概念和基本使用命令

docker概念 微服务&#xff1a;不再是以完整的物理机为基础的服务软件&#xff0c;而是借助于宿主机的性能。以小量的形式&#xff0c;单独部署的应用。 docker&#xff1a;是一个开源的应用容器引擎&#xff0c;基于go语言开发的&#xff0c;使用时apache2.0的协议。docker是…

信息安全、网络安全和数据安全的区别和联系

信息安全、网络安全和数据安全是信息安全领域的三大支柱&#xff0c;它们之间既存在区别又相互联系。以下是对这三者的详细比较&#xff1a; 一.区别 1.信息安全 定义 信息安全是指为数据处理系统建立和采用的技术和管理的安全保护&#xff0c;保护计算机硬件、软件和数据不…

Linux网络编程5——多路IO转接

一.TCP状态时序理解 1.TCP状态理解 **CLOSED&#xff1a;**表示初始状态。 **LISTEN&#xff1a;**该状态表示服务器端的某个SOCKET处于监听状态&#xff0c;可以接受连接。 **SYN_SENT&#xff1a;**这个状态与SYN_RCVD遥相呼应&#xff0c;当客户端SOCKET执行CONNECT连接时…

【Linux网络编程】数据链路层 | MAC帧 | ARP协议

前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站 &#x1f308;个人主页&#xff1a; 南桥几晴秋 &#x1f308;C专栏&#xff1a; 南桥谈C &#x1f308;C语言专栏&#xff1a; C语言学习系…

React Fiber框架中的Render渲染阶段——workLoop(performUnitOfWork【beginWork与completeWork】)

触发渲染过程——renderRoot renderRoot 是一个函数&#xff0c;用于触发渲染工作。它通常会调用并递归地执行一系列的渲染任务&#xff0c;直到完成整个更新过程。这个过程包括执行 Fiber 树中的 beginWork 和 completeWork&#xff0c;以及渲染新状态或 DOM。 function ren…

STM32裸机开发转FreeRTOS教程

目录 1. 简介2. RTOS设置&#xff08;1&#xff09;分配内存&#xff08;2&#xff09;查看任务剩余空间&#xff08;3&#xff09;使用osDelay 3. 队列的使用&#xff08;1&#xff09;创建队列&#xff08;1&#xff09;直接传值和指针传值&#xff08;2&#xff09;发送/接收…

Elasticsearch快速入门

Elasticsearch是由elastic公司开发的一套搜索引擎技术&#xff0c;它是elastic技术栈中的一部分,提供核心的数据存储、搜索、分析功能 elasticsearch之所以有如此高性能的搜索表现&#xff0c;正是得益于底层的倒排索引技术。那么什么是倒排索引呢&#xff1f; Elasticsearch…

新版AndroidStudio通过系统快捷创建带BottomNavigationView的项目踩坑记录

选择上面这个玩意创建的项目 坑点1 &#xff1a;配置的写法和不一样了 镜像的写法&#xff1a; 新的settings.gradle.kts中配置镜像的代码&#xff1a; pluginManagement {repositories {mavenCentral()google {content {includeGroupByRegex("com\\.android.*")…

Unity 自定义批量打包工具

打包配置项 using UnityEngine; using System.Collections.Generic;namespace MYTOOL.Build {/// <summary>/// 批量打包配置文件/// </summary>[CreateAssetMenu]public class BatchBuildProfile : ScriptableObject{public List<BuildTask> tasks new Li…

【JVM-2.3】深入解析JVisualVM:Java性能监控与调优利器

在Java应用的开发和运维过程中&#xff0c;性能监控与调优是不可或缺的环节。无论是排查内存泄漏、分析CPU瓶颈&#xff0c;还是优化线程使用&#xff0c;开发者都需要借助一些强大的工具来辅助诊断。JVisualVM 正是这样一款由Oracle提供的免费工具&#xff0c;它集成了多种性能…

基于大语言模型的组合优化

摘要&#xff1a;组合优化&#xff08;Combinatorial Optimization, CO&#xff09;对于提高工程应用的效率和性能至关重要。随着问题规模的增大和依赖关系的复杂化&#xff0c;找到最优解变得极具挑战性。在处理现实世界的工程问题时&#xff0c;基于纯数学推理的算法存在局限…

计算机网络 (40)域名系统DNS

前言 计算机网络域名系统DNS&#xff08;Domain Name System&#xff09;是互联网的基础技术之一&#xff0c;它负责将人类可读的域名转换为计算机用来通信的数字IP地址。 一、基本概念 DNS的主要目的是将域名解析或翻译为IP地址&#xff0c;使得用户可以通过简单易记的域名来访…

说一说mongodb组合索引的匹配规则

一、背景 有一张1000多万条记录的大表&#xff0c;需要做归档至历史表&#xff0c;出现了大量慢查询。 查询条件是 "classroomId": {$in: ["xxx", "xxx", ..... "xxx","xxx", "xxx" ] }耗时近5秒&#xff0c;且…

C# OpenCV机器视觉:转速测量

在一个看似平常却又暗藏神秘能量的日子里&#xff0c;阿杰正在他那充满科技感的实验室里&#xff0c;对着一堆奇奇怪怪的仪器发呆。突然&#xff0c;手机铃声如一道凌厉的剑气划破寂静&#xff0c;原来是工厂的赵厂长打来的紧急电话&#xff1a;“阿杰啊&#xff0c;咱们工厂新…

【RedisStack】Linux安装指南

【RedisStack】Linux安装指南.md 前言下载解压创建启动文件设置密码把密码设置到环境变量启动/停止相关命令测试&验证官网资料参考资料 前言 Redis Stack是使用Redis的最佳起点。我们将我们必须提供的最好的技术捆绑在一起&#xff0c;形成一个易于使用的软件包。Redis St…

2025-微服务—SpringCloud-1~3

2025-微服务—SpringCloud 第一章、从Boot和Cloud版本选型开始说起1、Springboot版本2、Springcloud版本3、Springcloud Alibaba4、本次讲解定稿版 第二章 关于Cloud各种组件的停更/升级/替换1、微服务介绍2、SpringCloud是什么&#xff1f;能干吗&#xff1f;产生背景&#xf…

深度学习-卷积神经网络反向传播梯度公式推导

这篇文章非常棒&#xff0c;单样本单通道的反向传播梯度公式推导我都理解了。为了防止找不到原网页&#xff0c;所以特复制于此 参考&#xff1a; https://zhuanlan.zhihu.com/p/640697443

MongoDB实践

MongoDB 是什么&#xff1f;— MongoDB 手册 v8.0 现在有一个名为city的集合&#xff0c;里面的结构如下图 一、增删改查操作 1.查询find db.getCollection("city").find({})db.city.find({})db.city.find({city:"广州" });db.city.find({city_id:17,ci…

mycat介绍与操作步骤

文章目录 1.分库分表2.mycat 入门2.1 概述2.2 案例&#xff1a;水平分表1&#xff09;准备工作2&#xff09;配置3&#xff09;启动并测试 3.mycat 配置详解3.1 schema.xml3.2 rule.xml3.3 server.xml 4.mycat 分片&#xff1a;垂直拆分1&#xff09;准备工作2&#xff09;配置…

苹果手机(IOS系统)出现安全延迟进行中如何关闭?

苹果手机&#xff08;IOS系统&#xff09;出现安全延迟进行中如何关闭&#xff1f; 一、设置二、隐私与安全性三、失窃设备保护关闭 一、设置 二、隐私与安全性 三、失窃设备保护关闭